A007980 Expansion of (1+x^2)/((1-x)^2*(1-x^3)).
1, 2, 4, 7, 10, 14, 19, 24, 30, 37, 44, 52, 61, 70, 80, 91, 102, 114, 127, 140, 154, 169, 184, 200, 217, 234, 252, 271, 290, 310, 331, 352, 374, 397, 420, 444, 469, 494, 520, 547, 574, 602, 631, 660, 690, 721, 752, 784, 817, 850, 884, 919, 954, 990, 1027, 1064
Offset: 0
Examples
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 10*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + ...
References
- A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
- A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z_4, J. Algeb. Combin., 6 (1997) 119-131 (Abstract, pdf, ps).
- Mohamed Laradji, Marni Mishna, and Karen Yeats, Some results on double triangle descendants of K_5, arXiv:1904.06923 [math.CO], 2019.
- C. L. Mallows and N. J. A. Sloane, Weight enumerators of self-orthogonal codes over GF(3), SIAM J. Alg. Discrete Methods, 2 (1981), 452-460.
- Paul Tabatabai and Dieter P. Gruber, Knights and Liars on Graphs, J. Int. Seq., Vol. 24 (2021), Article 21.5.8.
- Anton Zakharov, cevians.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
- Index entries for Molien series.
- Index entries for two-way infinite sequences.
Crossrefs
Programs
-
Maple
with (combinat):seq(count(Partition((2*n+1)), size=3), n=1..56); # Zerinvary Lajos, Mar 28 2008
-
Mathematica
Table[Ceiling[n (n+1)/3], {n, 56}] CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^3)),{x,0,60}],x] (* Vincenzo Librandi, Feb 25 2012 *) a[ n_] := Quotient[ n^2, 3] + n + 1; (* Michael Somos, Aug 23 2015 *) LinearRecurrence[{2,-1,1,-2,1},{1,2,4,7,10},60] (* Harvey P. Dale, Aug 24 2016 *)
-
PARI
{a(n) = if( n<-1, a(-3-n), polcoeff( (1 + x^2) / ( (1 - x)^2 * (1 - x^3)) + x*O(x^n), n))}; /* Michael Somos, Jun 07 2003 */
-
PARI
{a(n) = n^2\3 + n+1}; /* Michael Somos, Aug 23 2015 */
-
PARI
a(n) = #partitions(2*n, ,[1,3]); \\ Michel Marcus, Feb 12 2016
-
PARI
a(n) = #partitions(2*n+3, ,[3,3]); \\ Michel Marcus, Feb 12 2016
Formula
G.f.: (1 + x^2) / ((1 - x)^2 * (1 - x^3)). - Michael Somos, Jun 07 2003
a(n) = a(n-1) + a(n-3) -a(n-4) + 2 = a(-3-n) for all n in Z. - Michael Somos, Jun 07 2003
a(n) = ceiling((n+1)*(n+2)/3). - Paul Boddington, Jan 26 2004
a(n) = A192736(n+1) / (n+1). - Reinhard Zumkeller, Jul 08 2011
From Bruno Berselli, Oct 22 2010: (Start)
a(n) = ((n+1)*(n+2)+(2*cos(2*Pi*n/3)+1)/3)/3 = Sum_{i=1..n+1} A004396(i).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.
From Michael Somos, Aug 23 2015: (Start)
Euler transform of length 4 sequence [2, 1, 1, -1].
a(2*n) = A238705(n+1).
a(3*n - 1) = A049451(n).
a(3*n) = A003215(n).
a(3*n + 1) = A049450(n+1).
2*a(3*n - 1) = A005449(n).
2*a(3*n + 1) = A000326(n+1).
a(n+1) - a(n) = A004396(n+2). (End)
a(n) = floor((n^2+3*n+3)/3). - Giacomo Guglieri, May 01 2019
Sum_{n>=0} 1/a(n) = (tanh(Pi/(2*sqrt(3)))-1)*Pi/sqrt(3) + 3. - Amiram Eldar, May 20 2023
Comments