cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A103664 Primes p such that the number of divisors of p-1 is less than the number of divisors of p+1.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 29, 47, 53, 59, 71, 79, 83, 89, 107, 131, 139, 149, 167, 173, 179, 191, 197, 223, 227, 233, 239, 251, 263, 269, 293, 311, 317, 347, 359, 367, 383, 389, 419, 431, 439, 443, 449, 461, 467, 479, 499, 503, 509, 557, 563, 569, 587, 593, 599, 607
Offset: 1

Views

Author

Hugo Pfoertner, Feb 19 2005

Keywords

Comments

Mathematica coding by Wouter Meeussen and Robert G. Wilson v.

Examples

			a(1)=2 because d(1)=1 < d(3)=2; a(2)=3 because d(2)=2 < d(4)=3.
		

Crossrefs

Cf. A008328 number of divisors of p-1, A008329 number of divisors of p+1, A103665, A103666, A103667.

Programs

  • Maple
    with(numtheory): p:=proc(n) if isprime(n) and tau(n-1)Emeric Deutsch, Feb 22 2005
  • Mathematica
    Select[Prime[Range[1, 140]], Length[Divisors[ # - 1]] < Length[Divisors[ # + 1]] &]
    Select[Prime[Range[200]],DivisorSigma[0,#-1]Harvey P. Dale, May 31 2019 *)

A103665 Primes p such that the number of divisors of p-1 is greater than the number of divisors of p+1.

Original entry on oeis.org

13, 31, 37, 43, 61, 67, 73, 97, 101, 109, 113, 127, 151, 157, 163, 181, 193, 211, 229, 241, 257, 271, 277, 281, 283, 313, 331, 337, 353, 373, 379, 397, 401, 409, 421, 433, 457, 463, 487, 521, 523, 541, 547, 571, 577, 601, 613, 617, 631, 641, 661, 673, 677
Offset: 1

Views

Author

Hugo Pfoertner, Feb 19 2005

Keywords

Comments

Mathematica coding by Wouter Meeussen and Robert G. Wilson v.

Examples

			a(1)=13 because d(12)=6 > d(14)=4.
		

Crossrefs

Cf. A008328 number of divisors of p-1, A008329 number of divisors of p+1, A103664, A103666, A103667.

Programs

  • Mathematica
    Select[Prime[Range[2, 140]], Length[Divisors[ # - 1]] > Length[Divisors[ # + 1]] &]
    Select[Prime[Range[200]],DivisorSigma[0,#-1]>DivisorSigma[0,#+1]&] (* Harvey P. Dale, Aug 21 2022 *)
  • PARI
    forprime (k=2,700,if(numdiv(k-1)>numdiv(k+1),print1(k,", ")))
    \\ Hugo Pfoertner, Nov 30 2017

A119711 Primes p such that p+1, p+2 and p+3 have equal number of divisors.

Original entry on oeis.org

229, 241, 373, 1831, 2053, 2503, 3109, 5861, 6053, 6151, 6871, 8293, 8821, 9161, 9829, 12049, 13591, 13781, 14293, 14887, 16087, 17737, 19141, 19333, 20389, 21493, 23333, 23509, 24151, 25771, 27109, 28807, 29269, 31337, 33413, 33941, 35509
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Examples

			229 is OK since 230, 231 and 232 all have 8 divisors: {1,2,5,10,23,46,115,230}, {1,3,7,11,21,33,77,231} and {1,2,4,8,29,58,116,232}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@5000,DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]&]

A119705 Primes p such that the number of divisors of p+1 equals number of divisors of p+2.

Original entry on oeis.org

13, 37, 43, 97, 103, 157, 229, 241, 331, 373, 433, 541, 547, 877, 907, 1021, 1129, 1201, 1373, 1381, 1433, 1489, 1543, 1597, 1613, 1621, 1741, 1831, 1951, 1987, 2017, 2053, 2161, 2377, 2503, 2539, 2557, 2633, 2677, 2713, 2857, 2953, 3061, 3067, 3109, 3169
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Comments

Primes p such that A008329(p) = A049234(p).

Examples

			13 is a term because 14 and 15 each have 4 divisors: {1, 2, 7, 14} and {1, 3, 5, 15}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3200], PrimeQ[#] && DivisorSigma[0, # + 1] == DivisorSigma[0, # + 2] &] (* Amiram Eldar, Jan 26 2020 *)
  • PARI
    isok(n) = isprime(n) && (numdiv(n+1) == numdiv(n+2)); \\ Michel Marcus, Oct 10 2013

A119728 Primes p such that p+1, p+2, p+3 and p+4 have equal number of divisors.

Original entry on oeis.org

241, 13781, 19141, 21493, 50581, 61141, 76261, 77431, 94261, 95383, 95413, 98101, 104743, 104869, 134581, 141653, 142453, 152629, 153991, 158341, 160933, 165541, 169111, 199831, 201511, 203431, 206551, 229351, 233941, 235111, 253013, 273367
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Examples

			241 is a term since 242, 243, 244 and 245 all have 6 divisors:
{1,2,11,22,121,242},{1,3,9,27,81,243},{1,2,4,61,122,244} and {1,5,7,35,49,245}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@50000,DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]==DivisorSigma[0,#+4]&]

A119730 Primes p such that p+1, p+2, p+3, p+4 and p+5 have equal number of divisors.

Original entry on oeis.org

13781, 19141, 21493, 50581, 142453, 152629, 253013, 298693, 307253, 346501, 507781, 543061, 845381, 1079093, 1273781, 1354501, 1386901, 1492069, 1546261, 1661333, 1665061, 1841141, 2192933, 2208517, 2436341, 2453141, 2545013
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Examples

			13781 is a term since 13782, 13783, 13784, 13785 and 13786 all have 8 divisors:
{1,2,3,6,2297,4594,6891,13782}, {1,7,11,77,179,1253,1969,13783},
{1,2,4,8,1723,3446,6892,13784}, {1,3,5,15,919,2757,4595,13785} and
{1,2,61,113,122,226,6893,13786}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[1000000],DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]==DivisorSigma[0,#+4]==DivisorSigma[0,#+5]&]
    endQ[n_]:= Length[Union[DivisorSigma[0, (n + Range[5])]]]==1; Select[Prime[ Range[ 200000]],endQ] (* Harvey P. Dale, Jan 16 2019 *)

A119740 Primes p such that p+1, p+2, p+3, p+4, p+5 and p+6 have equal number of divisors.

Original entry on oeis.org

298693, 346501, 1841141, 2192933, 2861461, 3106981, 3375781, 3435589, 3437813, 3865429, 4597013, 6191461, 7016213, 7074901, 7637941, 7918373, 9196309, 10216901, 12798901, 13747429, 14100661, 14171653, 14770981, 14779189
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Examples

			298693 is a term since 298694, 298695, 298696, 298697, 298698 and 298699 all have 8 divisors:
{1,2,11,22,13577,27154,149347,298694}, {1,3,5,15,19913,59739,99565,298695},
{1,2,4,8,37337,74674,149348,298696}, {1,7,71,497,601,4207,42671,298697},
{1,2,3,6,49783,99566,149349,298698}, {1,19,79,199,1501,3781,15721,298699}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[1000000],DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]==DivisorSigma[0,#+4]==DivisorSigma[0,#+5]==DivisorSigma[0,#+6]&]

A145337 a(n) = d(p(n)+1) - d(p(n)-1), where d(m) = the number of divisors of m, p(n) = the n-th prime.

Original entry on oeis.org

1, 1, 1, 0, 2, -2, 1, 0, 4, 2, -2, -5, 0, -2, 6, 2, 8, -8, -2, 4, -8, 2, 8, 4, -6, -1, 0, 8, -4, -2, -4, 4, 0, 4, 6, -4, -8, -4, 12, 2, 14, -10, 6, -10, 3, 0, -10, 4, 8, -4, 4, 12, -14, 10, -1, 12, 10, -6, -8, -8, -2, 6, 0, 8, -12, 2, -10, -14, 8, 0, -4, 20, 2, -4, -4, 12, 10, -14, -7, -8
Offset: 0

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A008329(n) - A008328(n). - R. J. Mathar, Oct 10 2008

Extensions

More terms from R. J. Mathar and Ray Chandler, Oct 10 2008

A165319 Primes p where the number of divisors of p+1 is a power of 2.

Original entry on oeis.org

2, 5, 7, 13, 23, 29, 37, 41, 53, 61, 73, 101, 103, 109, 113, 127, 137, 151, 157, 167, 173, 181, 193, 229, 257, 263, 269, 277, 281, 311, 313, 317, 353, 373, 383, 389, 397, 401, 409, 421, 433, 439, 457, 461, 487, 509, 541, 569, 593, 601, 613, 617, 631, 641, 653
Offset: 1

Views

Author

Leroy Quet, Sep 14 2009

Keywords

Crossrefs

Cf. A008329. [R. J. Mathar, Sep 20 2009]

Programs

  • Maple
    b:= proc(n) option remember; is(n=2^ilog2(n)) end:
    a:= proc(n) option remember; local p; p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             if andmap(b, map(i-> i[2]+1, ifactors(p+1)[2])) then break fi
          od; p
        end:
    seq(a(n), n=1..55);  # Alois P. Heinz, Sep 05 2019
  • Mathematica
    okQ[p_] := PrimeQ[p] && IntegerQ[Log[2, DivisorSigma[0, p+1]]];
    Select[Prime[Range[200]], okQ] (* Jean-François Alcover, May 20 2020 *)
    Select[Prime[Range[150]],IntegerQ[Log2[DivisorSigma[0,#+1]]]&] (* Harvey P. Dale, Jul 30 2025 *)
  • PARI
    isok(p) = isprime(p) && (nd = numdiv(p+1)) && (nd == 2^valuation(nd, 2)); \\ Michel Marcus, Sep 05 2019

Extensions

Extended by R. J. Mathar, Sep 20 2009

A165320 Primes p where neither the number of divisors of p+1 nor the number of divisors of p-1 is a power of 2.

Original entry on oeis.org

17, 19, 97, 149, 163, 197, 199, 241, 293, 307, 337, 349, 449, 491, 523, 557, 577, 739, 773, 811, 881, 883, 991, 1013, 1051, 1061, 1151, 1171, 1249, 1277, 1279, 1423, 1451, 1459, 1471, 1493, 1531, 1549, 1601, 1637, 1667, 1693, 1709, 1733, 1747, 1861, 1949
Offset: 1

Views

Author

Leroy Quet, Sep 14 2009

Keywords

Crossrefs

Programs

  • Maple
    isA000079 := proc(n) RETURN( n=1 or numtheory[factorset](n) = {2}) ; end: isA165320 := proc(n) RETURN ( isprime(n) and not isA000079(numtheory[tau](n-1)) and not isA000079(numtheory[tau](n+1)) ) ; end: for n from 1 to 10000 do if isA165320(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 18 2009
  • Mathematica
    fQ[n_] := Union[ IntegerQ@# & /@ Log[2, DivisorSigma[0, {n - 1, n + 1}]]] == {False}; Select[ Prime@ Range@ 300, fQ@# &] (* Robert G. Wilson v, Sep 16 2009 *)
    Select[Prime[Range[300]],NoneTrue[Log2[DivisorSigma[0,#+{1,-1}]],IntegerQ]&] (* Harvey P. Dale, May 03 2023 *)
  • PARI
    is1(k) = apply(x -> x >> valuation(x, 2), numdiv(k)) > 1;
    isok(p) = isprime(p) && is1(p-1) && is1(p+1); \\ Amiram Eldar, Jun 26 2025

Extensions

More terms from Robert G. Wilson v and R. J. Mathar, Sep 16 2009
Showing 1-10 of 16 results. Next