A008586 Multiples of 4.
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 316 [Broken link]
- Milan Janjic, Two Enumerative Functions
- Tanya Khovanova, Recursive Sequences
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014, 2015.
- William A. Stein, The modular forms database
- Eric Weisstein's World of Mathematics, Doubly Even Number
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a008586 = (* 4) a008586_list = [0, 4 ..] -- Reinhard Zumkeller, May 13 2014
-
Maple
A008586:=n->4*n; seq(A008586(n), n=0..100); # Wesley Ivan Hurt, Feb 24 2014
-
Mathematica
Range[0, 500, 4] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
-
PARI
a(n)=n<<2 \\ Charles R Greathouse IV, Oct 17 2011
Formula
a(n) = A008574(n), n>0. - R. J. Mathar, Oct 28 2008
a(n) = Sum_{k>=0} A030308(n,k)*2^(k+2). - Philippe Deléham, Oct 17 2011
G.f.: 4*x/(1-x)^2. - David Wilding, Jun 21 2014
E.g.f.: 4*x*exp(x). - Stefano Spezia, May 18 2021
Comments