cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008586 Multiples of 4.

Original entry on oeis.org

0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 14 ).
A000466(n), a(n) and A053755(n) are Pythagorean triples. - Zak Seidov, Jan 16 2007
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-3) is equal to the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Number of n-permutations (n>=1) of 5 objects u, v, z, x, y with repetition allowed, containing n-1 u's. Example: if n=1 then n-1 = zero (0) u, a(1)=4 because we have v, z, x, y. If n=2 then n-1 = one (1) u, a(2)=8 because we have vu, zu, xu, yu, uv, uz, ux, uy. A038231 formatted as a triangular array: diagonal: 4, 8, 12, 16, 20, 24, 28, 32, ... - Zerinvary Lajos, Aug 06 2008
For n > 0: numbers having more even than odd divisors: A048272(a(n)) < 0. - Reinhard Zumkeller, Jan 21 2012
A214546(a(n)) < 0 for n > 0. - Reinhard Zumkeller, Jul 20 2012
A090418(a(n)) = 0 for n > 0. - Reinhard Zumkeller, Aug 06 2012
Terms are the differences of consecutive centered square numbers (A001844). - Mihir Mathur, Apr 02 2013
a(n)*Pi = nonnegative zeros of the cycloid generated by a circle of radius 2 rolling along the positive x-axis from zero. - Wesley Ivan Hurt, Jul 01 2013
Apart from the initial term, number of vertices of minimal path on an n-dimensional cubic lattice (n>1) of side length 2, until a self-avoiding walk gets stuck. A004767 + 1. - Matthew Lehman, Dec 23 2013
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 2688. - Philippe A.J.G. Chevalier, Dec 29 2015
First differences of A001844. - Robert Price, May 13 2016
Numbers k such that Fibonacci(k) is a multiple of 3 (A033888). - Bruno Berselli, Oct 17 2017

Crossrefs

Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008585, A005843, A001477, A000217.

Programs

Formula

a(n) = A008574(n), n>0. - R. J. Mathar, Oct 28 2008
a(n) = Sum_{k>=0} A030308(n,k)*2^(k+2). - Philippe Deléham, Oct 17 2011
a(n+1) = A000290(n+2) - A000290(n). - Philippe Deléham, Mar 31 2013
G.f.: 4*x/(1-x)^2. - David Wilding, Jun 21 2014
E.g.f.: 4*x*exp(x). - Stefano Spezia, May 18 2021