A008589 Multiples of 7.
0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 371, 378
Offset: 0
Examples
For n=2, a(2)=14 because 14 is the most likely sum (of the possible sums 4, 5, ..., 24) to occur when tossing 2 pairs of six-sided dice. - _Dennis P. Walsh_, Jan 26 2012
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Edward Brooks, Divisibility by Seven, The Analyst, Vol. 2, No. 5 (Sep., 1875), pp. 129-131.
- Tanya Khovanova, Recursive Sequences
- Michael Penn, The Luckiest Divisibility Test, YouTube video, 2022.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 319
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Haskell
a008589 = (* 7) a008589_list = [0, 7 ..] -- Reinhard Zumkeller, Jan 25 2013
-
Magma
[7*n : n in [0..50]]; // Wesley Ivan Hurt, Jun 06 2014
-
Maple
A008589:=n->7*n; seq(A008589(n), n=0..50); # Wesley Ivan Hurt, Jun 06 2014
-
Mathematica
Range[0, 1000, 7] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *) 7*Range[0,60] (* Harvey P. Dale, Feb 28 2023 *)
-
Maxima
makelist(7*n,n,0,20); /* Martin Ettl, Dec 17 2012 */
-
PARI
a(n)=7*n \\ Charles R Greathouse IV, Jul 10 2016
Formula
(floor(a(n)/10) - 2*(a(n) mod 10)) == 0 modulo 7, see A076309. - Reinhard Zumkeller, Oct 06 2002
a(n) = 7*n = 2*a(n-1)-a(n-2); G.f.: 7*x/(x-1)^2. - Vincenzo Librandi, Dec 24 2010
E.g.f.: 7*x*exp(x). - Ilya Gutkovskiy, May 11 2016
Comments