A008590 Multiples of 8.
0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432
Offset: 0
Examples
Beginning with n = 2, illustration of the terms as the area of square frames, where area equals the sum of inner and outer perimeters: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | _ _ _ _ _ _ | | | _ _ _ _ | _ _ _ _ _ | | | _ _ _ | | | | | _ _ _ _ | | | _ _ | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | |_| | | |_ _| | | |_ _ _| | | |_ _ _ _| | | | | | | | | | | | |_ _ _ _| |_ _ _ _ _| |_ _ _ _ _ _| |_ _ _ _ _ _ _| |_ _ _ _ _ _ _ _| a(2) = 16 a(3) = 24 a(4) = 32 a(5) = 40 a(6) = 48 The inner square has side n-2 and outer square side n+2, pursuant to the above and related formula. Note that a(2) is simply the square 4*4, with the inner square having side 0; considering the inner square as a center point, this frame also has thickness of 2. E.g., for a(4), the square frame is formed by a 6 X 6 outer square and a 2 X 2 inner square, with the area (6 X 6 minus 2 X 2) equal to the perimeter (4*6 + 4*2) at 32. - _Peter M. Chema_, Apr 03 2016
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Ch. Berdellé, Démonstration élémentaire d’un théorème énoncé par M. E. Catalan, Bulletin de la S. M. F., tome 17 (1889), p. 102. [Every positive multiple of 8 is the sum of 8 odd squares.]
- E. Catalan, Extrait d’une lettre, Bulletin de la S. M. F., tome 17 (1889), pp. 205-206.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 320.
- Tanya Khovanova, Recursive Sequences.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Leo Tavares, Illustration: Square Ray Frames
- Index entries for linear recurrences with constant coefficients, signature (2,-1)
Crossrefs
Programs
-
Haskell
a008590 = (* 8) a008590_list = [0,8..] -- Reinhard Zumkeller, Apr 02 2012
-
Mathematica
Table[8*n,{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2010 *)
-
PARI
a(n) = 8*n; \\ Altug Alkan, Apr 08 2016
-
Python
def A008590(n): return n<<3 # Chai Wah Wu, Mar 11 2025
Formula
a(n) = (2*n+1)^2 - (2*n-1)^2. - Xavier Acloque, Oct 22 2003
From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 8*n = 2*a(n-1) - a(n-2).
G.f.: 8*x/(x-1)^2. (End)
a(n) = Sum_{k=1..4n} (i^k + 1)*(i^(4n-k) + 1), where i=sqrt(-1). - Bruno Berselli, Mar 19 2012
a(n) = (n+2)^2 - (n-2)^2 = 4*(n+2) + 4*(n-2), as exemplified below. - Peter M. Chema, Apr 03 2016
E.g.f.: 8*x*exp(x). - Stefano Spezia, Apr 03 2023
Comments