A008810 a(n) = ceiling(n^2/3).
0, 1, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, number of red blocks in Fig 2.5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta and K.M. Tamizhmani, Blending two discrete integrability criteria: ..., arXiv:nlin/0104020 [nlin.SI], 2001.
- Kival Ngaokrajang, Illustration of initial terms.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Programs
-
Haskell
a008810 = ceiling . (/ 3) . fromInteger . a000290 a008810_list = [0,1,2,3,6] ++ zipWith5 (\u v w x y -> 2 * u - v + w - 2 * x + y) (drop 4 a008810_list) (drop 3 a008810_list) (drop 2 a008810_list) (tail a008810_list) a008810_list -- Reinhard Zumkeller, Dec 20 2012
-
Magma
[Ceiling(n^2/3): n in [0..60]]; // G. C. Greubel, Sep 12 2019
-
Maple
seq(ceil(n^2/3), n=0..60); # G. C. Greubel, Sep 12 2019
-
Mathematica
Ceiling[Range[0,60]^2/3] (* Vladimir Joseph Stephan Orlovsky, Mar 15 2011 *) LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,6},60] (* Harvey P. Dale, Jun 20 2011 *)
-
PARI
a(n)=ceil(n^2/3) /* Michael Somos, Aug 03 2006 */
-
Sage
[ceil(n^2/3) for n in (0..60)] # G. C. Greubel, Sep 12 2019
Formula
a(-n) = a(n) = ceiling(n^2/3).
G.f.: x*(1 + x^3)/((1 - x)^2*(1 - x^3)) = x*(1 - x^6)/((1 - x)*(1 - x^3))^2.
From Michael Somos, Aug 03 2006: (Start)
Euler transform of length 6 sequence [ 2, 0, 2, 0, 0, -1].
a(3n-1) = A056105(n).
a(3n+1) = A056109(n). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Jun 20 2011
9*a(n) = 4 + 3*n^2 - 2*A099837(n+3). - R. J. Mathar, May 02 2013
a(n) = n^2 - 2*A000212(n). - Wesley Ivan Hurt, Jul 07 2013
Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(2)*Pi*sinh(2*sqrt(2)*Pi/3)/(1+2*cosh(2*sqrt(2)*Pi/3)). - Amiram Eldar, Aug 13 2022
E.g.f.: (exp(x)*(4 + 3*x*(1 + x)) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 28 2022
Comments