cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008810 a(n) = ceiling(n^2/3).

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 3*w = 2*x + y. - Clark Kimberling, Jun 04 2012
a(n) is also the number of L-shapes (3-cell polyominoes) packing into an n X n square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, number of red blocks in Fig 2.5.

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), this sequence (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • Haskell
    a008810 = ceiling . (/ 3) . fromInteger . a000290
    a008810_list = [0,1,2,3,6] ++ zipWith5
                   (\u v w x y -> 2 * u - v + w - 2 * x + y)
       (drop 4 a008810_list) (drop 3 a008810_list) (drop 2 a008810_list)
       (tail a008810_list) a008810_list
    -- Reinhard Zumkeller, Dec 20 2012
    
  • Magma
    [Ceiling(n^2/3): n in [0..60]]; // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(ceil(n^2/3), n=0..60); # G. C. Greubel, Sep 12 2019
  • Mathematica
    Ceiling[Range[0,60]^2/3] (* Vladimir Joseph Stephan Orlovsky, Mar 15 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,6},60] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n)=ceil(n^2/3) /* Michael Somos, Aug 03 2006 */
    
  • Sage
    [ceil(n^2/3) for n in (0..60)] # G. C. Greubel, Sep 12 2019

Formula

a(-n) = a(n) = ceiling(n^2/3).
G.f.: x*(1 + x^3)/((1 - x)^2*(1 - x^3)) = x*(1 - x^6)/((1 - x)*(1 - x^3))^2.
From Michael Somos, Aug 03 2006: (Start)
Euler transform of length 6 sequence [ 2, 0, 2, 0, 0, -1].
a(3n-1) = A056105(n).
a(3n+1) = A056109(n). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Jun 20 2011
a(A008585(n)) = A033428(n). - Reinhard Zumkeller, Dec 20 2012
9*a(n) = 4 + 3*n^2 - 2*A099837(n+3). - R. J. Mathar, May 02 2013
a(n) = n^2 - 2*A000212(n). - Wesley Ivan Hurt, Jul 07 2013
Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(2)*Pi*sinh(2*sqrt(2)*Pi/3)/(1+2*cosh(2*sqrt(2)*Pi/3)). - Amiram Eldar, Aug 13 2022
E.g.f.: (exp(x)*(4 + 3*x*(1 + x)) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 28 2022