cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008911 a(n) = n^2*(n^2 - 1)/6.

Original entry on oeis.org

0, 0, 2, 12, 40, 100, 210, 392, 672, 1080, 1650, 2420, 3432, 4732, 6370, 8400, 10880, 13872, 17442, 21660, 26600, 32340, 38962, 46552, 55200, 65000, 76050, 88452, 102312, 117740, 134850, 153760, 174592, 197472, 222530, 249900, 279720, 312132
Offset: 0

Views

Author

Keywords

Comments

Number of equilateral triangles in rhombic portion of side n+1 in hexagonal lattice.
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Sum of squared distances on n X n board between n queens each on its own row and column. - Zak Seidov, Sep 04 2002
For queens "each on its column and row" the sum of squared distances does not depend on configuration - while sum of distances does.
Number of cycles of length 3 in the bishop's graph associated with an (n+1) X (n+1) chessboard. - Anton Voropaev (anton.n.voropaev(AT)gmail.com), Feb 01 2009
a(n) is number of ways to place 3 queens on an (n+1) X (n+1) chessboard so that they diagonally attack each other exactly 3 times. The maximal possible attack number, p=binomial(k,2)=3 for k=3 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form the corresponding complete graph. - Antal Pinter, Dec 27 2015
From a(1), convolution of the oblong numbers (A002378) with the odd numbers (A005408). - Bruno Berselli, Oct 24 2016
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, p and |q-p|. - Wesley Ivan Hurt, Apr 15 2018

Examples

			a(2)=2 because on 2 X 2 board queens "each on its column and row" may take only two angular cells, then squared distance is 1^2+1^2=2. a(3)=12 because on 3 X 3 board queens "each on its column and row" make only two essentially distinct configurations: {1,2,3}, {1,3,2} and in both cases the sum of three squared distances is 12.
G.f.: 2*x^2 + 12*x^3 + 40*x^4 + 100*x^5 + 210*x^6 + 392*x^7 + 672*x^8 + ...
		

References

  • James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 6).

Crossrefs

Convolution of the oblong numbers with the even numbers: A033488.

Programs

  • GAP
    List([0..40], n-> n^2*(n^2-1)/6); # G. C. Greubel, Sep 13 2019
  • Magma
    [n^2*(n^2-1)/6: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
    
  • Maple
    A008911 := n->n^2*(n^2-1)/6; seq(A008911(n), n=0..40);
  • Mathematica
    a[m_]:= m^2(m^2-1)/6;
    Binomial[Range[0,40]^2, 2]/3 (* G. C. Greubel, Sep 13 2019 *)
  • PARI
    {a(n) = n^2*(n^2-1)/6};
    
  • Sage
    [n^2*(n^2-1)/6 for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

G.f.: 2*x^2*(1+x)/(1-x)^5.
a(n) = 2*A002415(n) = A047928(n-1)/6 = A083374(n-1)/3 = A006011(n)*2/3. - Zerinvary Lajos, May 09 2007
a(n) = n*binomial(n+1,3). - Martin Renner, Apr 03 2011
a(n+1) = (n+1)*A000292(n). - Tom Copeland, Sep 13 2011
From G. C. Greubel, Sep 13 2019: (Start)
a(n) = binomial(n^2,2)/3.
E.g.f.: x^2*(6 + 6*x + x^2)*exp(x)/6. (End)
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=2} 1/a(n) = 21/2 - Pi^2.
Sum_{n>=2} (-1)^n/a(n) = (Pi^2 - 9)/2. (End)
a(n) = Sum_{j=0..n-1} binomial(n,2) + binomial(n,3). - Detlef Meya, Jan 20 2024