A008955 Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.
1, 1, 1, 1, 5, 4, 1, 14, 49, 36, 1, 30, 273, 820, 576, 1, 55, 1023, 7645, 21076, 14400, 1, 91, 3003, 44473, 296296, 773136, 518400, 1, 140, 7462, 191620, 2475473, 15291640, 38402064, 25401600, 1, 204, 16422, 669188, 14739153, 173721912, 1017067024, 2483133696, 1625702400
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 5, 4; 1, 14, 49, 36; 1, 30, 273, 820, 576; ...
References
- B. C. Berndt, Ramanujan's Notebooks Part 1, Springer-Verlag 1985.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
Links
- Alois P. Heinz, Rows n = 0..100, flattened (first 51 rows from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- R. H. Boels, Three particle superstring amplitudes with massive legs, arXiv preprint arXiv:1201.2655 [hep-th], 2012.
- R. H. Boels and T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989).
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- T. L. Curtright and T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arxiv:1408.0767 [math-ph], 2014.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- Toshiki Matsusaka, Applications of Faà di Bruno's formula to partition traces, arXiv:2507.00404 [math.NT], 2025. See p. 5.
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- S. Shadrin, L. Spitz, and D. Zvonkine, On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc., II. Ser. 86, No. 2, 407-432 (2012), Corollary 7.5.
Crossrefs
Cf. A036969.
Columns include A000330, A000596, A000597. Right-hand columns include A001044, A001819, A001820, A001821. Row sums are in A101686.
Appears in A160464 (Eta triangle), A160474 (Zeta triangle), A160479 (ZL(n)), A161739 (RSEG2 triangle), A161742, A161743, A002195, A002196, A162440 (EG1 matrix), A162446 (ZG1 matrix) and A163927. - Johannes W. Meijer, Jun 18 2009, Jul 06 2009 and Aug 17 2009
Cf. A234324 (central terms).
Programs
-
GAP
T:= function(n,k) if k=0 then return 1; elif k=n then return (Factorial(n))^2; else return n^2*T(n-1,k-1) + T(n-1,k); fi; end; Flat(List([0..8], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 14 2019
-
Haskell
a008955 n k = a008955_tabl !! n !! k a008955_row n = a008955_tabl !! n a008955_tabl = [1] : f [1] 1 1 where f xs u t = ys : f ys v (t * v) where ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0]) v = u + 1 -- Reinhard Zumkeller, Dec 24 2013
-
Magma
T:= func< n,k | Factorial(2*(n+1))*(&+[(-1)^j*Binomial(n,k-j)*(&+[2^(m-2*k)*StirlingFirst(2*(n-k+1)+m, 2*(n-k+1))*Binomial(2*(n-k+1)+2*j-1, 2*(n-k+1)+m-1)/Factorial(2*(n-k+1)+m): m in [0..2*j]]): j in [0..k]]) >; [T(n,k): k in [0..n], n in [0..8]]; // G. C. Greubel, Sep 14 2019
-
Maple
nmax:=7: for n from 0 to nmax do t1(n, 0):=1: t1(n, n):=(n!)^2 end do: for n from 1 to nmax do for k from 1 to n-1 do t1(n, k) := t1(n-1, k-1)*n^2 + t1(n-1, k) end do: end do: seq(seq(t1(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012 t1 := proc(n,k) sum((-1)^j*stirling1(n+1,n+1-k+j)*stirling1(n+1,n+1-k-j),j=-k..k) ; end proc: # Mircea Merca, Apr 02 2012 # third Maple program: T:= proc(n, k) option remember; `if`(k=0, 1, add(T(j-1, k-1)*j^2, j=1..n)) end: seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Feb 19 2022
-
Mathematica
t[n_, 0]=1; t[n_, n_]=(n!)^2; t[n_ , k_ ]:=t[n, k] = n^2*t[n-1, k-1] + t[n-1, k]; Flatten[Table[t[n, k], {n,0,8}, {k,0,n}] ][[1 ;; 42]] (* Jean-François Alcover, May 30 2011, after recurrence formula *)
-
Maxima
T(n,m):=(2*(n+1))!*sum((-1)^k*binomial(n,m-k)*sum((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1,2*(n-m+1)+i-1))/(2*(n-m+1)+i)!,i,0,2*k),k,0,m); /* Vladimir Kruchinin, Oct 05 2013 */
-
PARI
T(n,k)=if(k==0,1, if(k==n, (n!)^2, n^2*T(n-1, k-1) + T(n-1, k))); for(n=0,8, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 14 2019
-
Sage
# This triangle is (0,0)-based. def A008955(n, k) : if k==0 : return 1 if k==n : return factorial(n)^2 return n^2*A008955(n-1, k-1) + A008955(n-1, k) for n in (0..7) : print([A008955(n, k) for k in (0..n)]) # Peter Luschny, Feb 04 2012
Formula
The n-th row gives the coefficients in the expansion of Product_{i=1..n-1}(x+i^2), highest powers first (see Comments section).
The triangle can be obtained from the recurrence t1(n,k) = n^2*t1(n-1,k-1) + t1(n-1,k) with t1(n,0) = 1 and t1(n,n) = (n!)^2.
t1(n,k) = Sum_{j=-k..k} (-1)^j*s(n+1,n+1-k+j)*s(n+1,n+1-k-j) = Sum_{j=0..2*(n+1-k)} (-1)^(n+1-k+j)*s(n+1,j)*s(n+1,2*(n+1-k)-j), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 02 2012
E.g.f.: cosh(2/sqrt(t)*asin(sqrt(t)*z/2)) = 1 + z^2/2! + (1 + t)*z^4/4! + (1 + 5*t + 4*t^2)*z^6/6! + ... (see Berndt, p.263 and p.306). - Peter Bala, Aug 29 2012
T(n,m) = (2*(n+1))!*Sum_{k=0..m} ((-1)^k*binomial(n,m-k)*Sum_{i=0..2*k} ((2^(i-2*m)*stirling1(2*(n-m+1)+i,2*(n-m+1))*binomial(2*(n-m+1)+2*k-1, 2*(n-m+1)+i-1))/(2*(n-m+1)+i)!)). - Vladimir Kruchinin, Oct 05 2013
Extensions
There's an error in the last column of Riordan's table (change 46076 to 21076).
More terms from Vladeta Jovovic, Apr 16 2000
Link added and cross-references edited by Johannes W. Meijer, Aug 17 2009
Discussion of Riordan's definition of central factorial numbers added by N. J. A. Sloane, Feb 01 2011
Comments