A010466 Decimal expansion of square root of 8.
2, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7
Offset: 1
Examples
2.828427124746190097603377448419396157139343750753896146353359475981464... Sqrt(8) = sqrt(1+2*i*sqrt(2)) + sqrt(1-2*i*sqrt(2)) = sqrt(1/2+2*i*sqrt(3)) + sqrt(1/2-2*i*sqrt(3)), where i=sqrt(-1). - _Bruno Berselli_, Nov 20 2012 1 + 3/4 + 3*5/(4*8) + 3*5*7/(4*8*12) + 3*5*7*9/(4*8*12*16) + ... - _Bruno Berselli_, Mar 16 2014
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 187.
- S. R. Finch, Moving Sofa Constant, Sect. 8.12 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 519-523, 2003.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Jason Kimberley, Index of expansions of sqrt(d) in base b
- R. J. Nemiroff & J. Bonnell, The first 1 million digits of the square root of 8
- R. J. Nemiroff & J. Bonnell, Plouffe's Inverter, The first 1 million digits of the square root of 8
- Ana Rechtman, Juin 2023, 3e défi, Images des Mathématiques, CNRS, 2023.
- S. Uchiyama, On the distribution of integers representable as a sum of two h-th powers, J. Fac. Sci. Hokkaido Univ. Ser. I, 18, 124-127, 1964/1965.
- Eric Weisstein's World of Mathematics, Moving Ladder Problem
- Index entries for algebraic numbers, degree 2
Programs
-
Magma
SetDefaultRealField(RealField(100)); Sqrt(8); // Vincenzo Librandi, Feb 13 2020
-
Maple
evalf(2^(3/2)) ; # R. J. Mathar, Jul 15 2013
-
Mathematica
RealDigits[N[Sqrt[8],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
-
PARI
default(realprecision, 20080); x=sqrt(8); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010466.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
Formula
Equals 1 + Sum_{n>=1} ( Product_{k=1..n} (2k+1)/(4k) ). - Bruno Berselli, Mar 16 2014
Equals 2*A002193. - R. J. Mathar, Jan 14 2021
From Peter Bala, Mar 01 2022: (Start)
Equals 4*hypergeom([-1/2, -3/4], [5/4], -1). (End)
Equals 8 * A020765. - R. J. Mathar, Aug 24 2023
Comments