cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010467 Decimal expansion of square root of 10.

Original entry on oeis.org

3, 1, 6, 2, 2, 7, 7, 6, 6, 0, 1, 6, 8, 3, 7, 9, 3, 3, 1, 9, 9, 8, 8, 9, 3, 5, 4, 4, 4, 3, 2, 7, 1, 8, 5, 3, 3, 7, 1, 9, 5, 5, 5, 1, 3, 9, 3, 2, 5, 2, 1, 6, 8, 2, 6, 8, 5, 7, 5, 0, 4, 8, 5, 2, 7, 9, 2, 5, 9, 4, 4, 3, 8, 6, 3, 9, 2, 3, 8, 2, 2, 1, 3, 4, 4, 2, 4, 8, 1, 0, 8, 3, 7, 9, 3, 0, 0, 2, 9
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 3 followed by {6} repeated. - Harry J. Smith, Jun 02 2009
In 1594, Joseph Scaliger claimed Pi = sqrt(10), but Ludolph van Ceulen immediately knew this to be wrong. - Alonso del Arte, Jan 17 2013
The 7th-century Hindu mathematician Brahmagupta used this constant as value of Pi. - Stefano Spezia, Jul 08 2022

Examples

			3.162277660168379331998893544432718533719555139325216826857504852792594...
		

References

  • Petr Beckmann, A History of Pi, 3rd Ed., Boulder, Colorado: The Golem Press (1974): p. 27.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 112.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 238.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.31.4, p. 201.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง3.6 The Quest for Pi, pp. 89, 91.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 55.

Crossrefs

Cf. A000032, A040006 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(10); // Vincenzo Librandi, Feb 15 2020
  • Mathematica
    RealDigits[N[Sqrt[10],200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    default(realprecision, 20080); x=sqrt(10); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010467.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009
    

Formula

Sqrt(10) = sqrt(1 + i*sqrt(15)) + sqrt(1 - i*sqrt(15)) = sqrt(1/2 + 2*i*sqrt(5)) + sqrt(1/2 - 2*i*sqrt(5)), where i = sqrt(-1). - Bruno Berselli, Nov 20 2012
Equals 1/sqrt(10), with offset 0. - Michel Marcus, Mar 10 2021
Equals 2 + Sum_{k>=1} Lucas(k)*binomial(2*k,k)/8^k. - Amiram Eldar, Jan 17 2022
a(k) = floor(Sum_{n>=1} A005875(n)/exp(Pi*n/(10^((2/3)*k+(1/3))))) mod 10. Will give the k-th decimal digit of sqrt(10). A005875 : number of ways to write n as sum of 3 squares. - Simon Plouffe, Dec 30 2023