cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A248239 Egyptian fraction representation of sqrt(10) (A010467) using a greedy function.

Original entry on oeis.org

3, 7, 52, 5271, 32510519, 1551821465402536, 2553352811042166137014681056617, 6785214292790116540717856342564735260380655042140053309985580, 57499324177051573068556985649019772314982410954417460069917198506894068347777607349711324456505504280305966462257432295349
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 10]]

A005667 Numerators of continued fraction convergents to sqrt(10).

Original entry on oeis.org

1, 3, 19, 117, 721, 4443, 27379, 168717, 1039681, 6406803, 39480499, 243289797, 1499219281, 9238605483, 56930852179, 350823718557, 2161873163521, 13322062699683, 82094249361619, 505887558869397, 3117419602578001, 19210405174337403, 118379850648602419
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A005668(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 10*b^2 = -1, a(2*n) with b(2*n) := A005668(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 10*b^2 = +1 (cf. Emerson reference).
Bisection: a(2*n) = T(n,19) = A078986(n), n >= 0 and a(2*n+1) = 3*S(2*n, 2*sqrt(10)), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
The initial 1 corresponds to a denominator 0 in A005668. But according to standard conventions, a continued fraction starts with b(0) = integer part of the number, and the sequence of convergents p(n)/q(n) start with (p(0),q(0)) = (b(0),1). A fraction 1/0 has no mathematical meaning, the only justification is that initial terms p(-1) = 1, q(-1) = 0 are consistent with the recurrent relations p(n) = b(n)*p(n-1) + b(n-2) and the same for q(n). - M. F. Hasler, Nov 02 2019

Examples

			G.f. = 1 + 3*x + 19*x^2 + 117*x^3 + 721*x^4 + 4443*x^5 + 27379*x^6 + ... - _Michael Somos_, Jul 14 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010467, A040006, A084134, A005668 (denominators).

Programs

  • Magma
    I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    A005667:=(-1+3*z)/(-1+6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{1},Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[10],n]]],{n,1,30}]] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    CoefficientList[Series[(1-3x)/(1-6x-x^2), {x,0,30}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    Join[{1},Numerator[Convergents[Sqrt[10],30]]] (* or *) LinearRecurrence[ {6,1},{1,3},30] (* Harvey P. Dale, Aug 22 2016 *)
    a[ n_] := (-I)^n ChebyshevT[ n, 3 I]; (* Michael Somos, Jul 14 2018 *)
    LucasL[Range[0,30], 6]/2 (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    a(n)=([0,1;1,6]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    ((1-3*x)/(1-6*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019

Formula

a(n) = 6*a(n-1) + a(n-2).
G.f.: (1-3*x)/(1-6*x-x^2).
a(n) = ((-i)^n)*T(n, 3*i) with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1.
From Paul Barry, Nov 15 2003: (Start)
Binomial transform of A084132.
E.g.f.: exp(3*x)*cosh(sqrt(10)*x).
a(n) = ((3+sqrt(10))^n + (3-sqrt(10))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k) * 10^k * 3^(n-2*k). (End)
a(n) = (-1)^n * a(-n) for all n in Z. - Michael Somos, Jul 14 2018 [This refers to the sequence extended to negative indices according to the recurrence relation, but not to the sequence as it is currently defined. - M. F. Hasler, Nov 02 2019]
a(n) = Lucas(n,6)/2, Lucas polynomial, L(n,x), evaluated at x = 6. - G. C. Greubel, Jun 06 2019

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A040006 Continued fraction for sqrt(10).

Original entry on oeis.org

3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Keywords

Comments

Eventual period is (6). - Zak Seidov, Mar 05 2011
The convergents are given in A005667(n+1)/A005668(n+1), n >= 0. - Wolfdieter Lang, Nov 23 2017
Decimal expansion of 11/30. - Elmo R. Oliveira, Feb 16 2024

Examples

			3.162277660168379331998893544... = 3 + 1/(6 + 1/(6 + 1/(6 + 1/(6 + ...)))).
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010467 (decimal expansion), A005667(n+1)/A005668(n+1) (convergents), A248239 (Egyptian fraction).
Cf. A040000.

Programs

Formula

a(n) = 3 + 3*sign(n). a(n) = 6, n > 0. - Wesley Ivan Hurt, Nov 01 2013
From Elmo R. Oliveira, Feb 16 2024: (Start)
G.f.: 3*(1+x)/(1-x).
E.g.f.: 6*exp(x) - 3.
a(n) = 3*A040000(n). (End)

A176398 Decimal expansion of 3+sqrt(10).

Original entry on oeis.org

6, 1, 6, 2, 2, 7, 7, 6, 6, 0, 1, 6, 8, 3, 7, 9, 3, 3, 1, 9, 9, 8, 8, 9, 3, 5, 4, 4, 4, 3, 2, 7, 1, 8, 5, 3, 3, 7, 1, 9, 5, 5, 5, 1, 3, 9, 3, 2, 5, 2, 1, 6, 8, 2, 6, 8, 5, 7, 5, 0, 4, 8, 5, 2, 7, 9, 2, 5, 9, 4, 4, 3, 8, 6, 3, 9, 2, 3, 8, 2, 2, 1, 3, 4, 4, 2, 4, 8, 1, 0, 8, 3, 7, 9, 3, 0, 0, 2, 9, 5, 1, 8, 7, 3, 4
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2010

Keywords

Comments

Continued fraction expansion of 3+sqrt(10) is A010722.
This is the shape of a 6-extension rectangle; see A188640 for definitions. - Clark Kimberling, Apr 09 2011
c^n = c*A005668(n) + A005668(n-1). - Gary W. Adamson, Apr 04 2024

Examples

			6.16227766016837933199...
		

Crossrefs

Cf. A010467 (decimal expansion of sqrt(10)), A010722 (all 6's sequence).
Cf. A049310.

Programs

Formula

a(n) = A010467(n) for n >= 2.
Equals exp(arcsinh(3)), since arcsinh(x) = log(x+sqrt(x^2+1)). - Stanislav Sykora, Nov 01 2013
Equals lim_{n->oo} S(n, 2*sqrt(10))/ S(n-1, 2*sqrt(10)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A017934 Powers of sqrt(10) rounded down.

Original entry on oeis.org

1, 3, 10, 31, 100, 316, 1000, 3162, 10000, 31622, 100000, 316227, 1000000, 3162277, 10000000, 31622776, 100000000, 316227766, 1000000000, 3162277660, 10000000000, 31622776601, 100000000000, 316227766016, 1000000000000, 3162277660168, 10000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010467 Decimal expansion of sqrt(10), A131581, A136582, A175733, A175734.

Programs

Formula

a(n) = floor(sqrt(10^n)). - Zak Seidov

A010494 Decimal expansion of square root of 40.

Original entry on oeis.org

6, 3, 2, 4, 5, 5, 5, 3, 2, 0, 3, 3, 6, 7, 5, 8, 6, 6, 3, 9, 9, 7, 7, 8, 7, 0, 8, 8, 8, 6, 5, 4, 3, 7, 0, 6, 7, 4, 3, 9, 1, 1, 0, 2, 7, 8, 6, 5, 0, 4, 3, 3, 6, 5, 3, 7, 1, 5, 0, 0, 9, 7, 0, 5, 5, 8, 5, 1, 8, 8, 8, 7, 7, 2, 7, 8, 4, 7, 6, 4, 4, 2, 6, 8, 8, 4, 9, 6, 2, 1, 6, 7, 5, 8, 6, 0, 0, 5, 9
Offset: 1

Views

Author

Keywords

Examples

			6.324555320336758663997787088865437067439110278650433653715009705585188....
		

Crossrefs

Cf. A040033 (continued fraction). - Harry J. Smith, Jun 05 2009

Programs

  • Mathematica
    RealDigits[N[Sqrt[40],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(40); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010494.txt", n, " ", d));  \\ Harry J. Smith, Jun 05 2009

Formula

Equals 2*A010467. - R. J. Mathar, Jan 14 2021
Equals 10 * Sum_{k>=1} Fibonacci(k)*binomial(2*k,k)/8^k. - Amiram Eldar, Jan 17 2022

A020797 Decimal expansion of 1/sqrt(40).

Original entry on oeis.org

1, 5, 8, 1, 1, 3, 8, 8, 3, 0, 0, 8, 4, 1, 8, 9, 6, 6, 5, 9, 9, 9, 4, 4, 6, 7, 7, 2, 2, 1, 6, 3, 5, 9, 2, 6, 6, 8, 5, 9, 7, 7, 7, 5, 6, 9, 6, 6, 2, 6, 0, 8, 4, 1, 3, 4, 2, 8, 7, 5, 2, 4, 2, 6, 3, 9, 6, 2, 9, 7, 2, 1, 9, 3, 1, 9, 6, 1, 9, 1, 1, 0, 6, 7, 2, 1, 2, 4, 0, 5, 4, 1, 8, 9, 6, 5, 0, 1, 4
Offset: 0

Views

Author

Keywords

Comments

With offset 1, decimal expansion of sqrt(5/2). - Eric Desbiaux, May 01 2008
sqrt(5/2) appears as a coordinate in a degree-5 integration formula on 13 points in the unit sphere [Stroud & Secrest]. - R. J. Mathar, Oct 12 2011
With offset 2, decimal expansion of sqrt(250). - Michel Marcus, Nov 04 2013
From Wolfdieter Lang, Nov 21 2017: (Start)
The regular continued fraction of 1/sqrt(40) = 1/(2*sqrt(10)) is [0; 6, 3, repeat(12, 3)], and the convergents are given by A(n-1)/B(n-1), n >= 0, with A(-1) = 0, A(n-1) = A041067(n) and B(-1) = 1, B(n-1) = A041066(n).
The regular continued fraction of sqrt(5/2) = sqrt(10)/2 is [1; repeat(1, 1, 2)], and the convergents are given in A295333/A295334.
sqrt(10)/2 is one of the catheti of the rectangular triangle with hypotenuse sqrt(13)/2 = A295330 and the other cathetus sqrt(3)/2 = A010527. This can be constructed from a regular hexagon inscribed in a circle with a radius of 1 unit. If the vertex V_0 has coordinates (x, y) = (1, 0) and the midpoint M_4 = (0, -sqrt(3)/2) then the point L = (sqrt(10)/2, 0) is obtained as intersection of the x-axis and a circle around M_4 with radius taken from the distance between M_4 and V_1 = (1/2, sqrt(3)/2) which is sqrt(13)/2. (End)

Examples

			1/sqrt(40) = 0.15811388300841896659994467722163592668597775696626084134287...
sqrt(5/2) = 1.5811388300841896659994467722163592668597775696626084134287...
sqrt(250) = 15.811388300841896659994467722163592668597775696626084134287...
		

Crossrefs

Cf. A010467 (sqrt(10)), A010527, A010494 (sqrt(40)), A041067/A041066, A295330, A295333/A295334.

Programs

Formula

Equals Re(sqrt(5*i)/10) = Im(sqrt(5*i)/10). - Karl V. Keller, Jr., Sep 01 2020
Equals A010467/20. - R. J. Mathar, Feb 23 2021

A177102 Beatty sequence for sqrt(10).

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 22, 25, 28, 31, 34, 37, 41, 44, 47, 50, 53, 56, 60, 63, 66, 69, 72, 75, 79, 82, 85, 88, 91, 94, 98, 101, 104, 107, 110, 113, 117, 120, 123, 126, 129, 132, 135, 139, 142, 145, 148, 151, 154, 158, 161, 164, 167, 170, 173, 177, 180, 183
Offset: 1

Views

Author

Clark Kimberling, Aug 16 2011

Keywords

Crossrefs

Partial sums of A081168.

Programs

  • Magma
    [Floor(n*Sqrt(10)): n in [1..60]]; // Vincenzo Librandi, Oct 24 2011
    
  • Mathematica
    Table[Floor[n*Sqrt[10]],{n,1,100}]
  • PARI
    for(n=1,50, print1(floor(n*sqrt(10)), ", ")) \\ G. C. Greubel, Sep 24 2017

Formula

a(n) = floor(n*sqrt(10)).

A136582 Sqrt(10)-primes: primes obtained by concatenating the first digits in the decimal expansion of sqrt(10).

Original entry on oeis.org

3, 31, 3162277, 316227766016837933, 316227766016837933199889354443271
Offset: 1

Views

Author

Lekraj Beedassy, Jan 09 2008

Keywords

Comments

n such that floor(sqrt(10^(2*n-1))) is prime (1, 2, 7, 18, 33, ...) are given in A136583.
This sequence is the list of prime terms in A017934.
The next term has 206 digits. - Harvey P. Dale, Dec 06 2023

Crossrefs

Programs

  • Magma
    // by Jason Kimberley, Aug 2011
    for n in [1..499 by 2] do
      f := Isqrt(10^n);
      if IsPrime(f) then
        printf "%o,", f;
      end if;
    end for;
  • Mathematica
    Module[{nn=50,sq10},sq10=RealDigits[Sqrt[10],10,nn][[1]];Select[FromDigits/@Table[Take[sq10,n],{n,nn}],PrimeQ]] (* Harvey P. Dale, Dec 06 2023 *)

Formula

a(n) = A017934(2*A136583(n)-1).

A176221 Decimal expansion of sqrt(110).

Original entry on oeis.org

1, 0, 4, 8, 8, 0, 8, 8, 4, 8, 1, 7, 0, 1, 5, 1, 5, 4, 6, 9, 9, 1, 4, 5, 3, 5, 1, 3, 6, 7, 9, 9, 3, 7, 5, 9, 8, 4, 7, 5, 2, 7, 1, 8, 5, 7, 6, 8, 1, 5, 0, 3, 9, 8, 4, 8, 7, 5, 7, 5, 5, 7, 6, 3, 5, 8, 0, 0, 0, 5, 9, 2, 5, 5, 0, 1, 1, 0, 0, 6, 9, 1, 4, 1, 9, 3, 8, 5, 2, 8, 8, 9, 3, 3, 1, 9, 4, 4, 1, 7, 8, 0, 3, 9, 6
Offset: 2

Views

Author

Klaus Brockhaus, Apr 12 2010

Keywords

Comments

Continued fraction expansion of sqrt(110) is A040099.

Examples

			sqrt(110) = 10.48808848170151546991...
		

Crossrefs

Cf. A010467 (decimal expansion of sqrt(10)), A010468 (decimal expansion of sqrt(11)), A040099.

Programs

Formula

Equals 10 * Sum_{k>=0} binomial(2*k,k)/44^k. - Amiram Eldar, Aug 04 2022
Showing 1-10 of 43 results. Next