cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A248266 Egyptian fraction representation of sqrt(40) (A010494) using a greedy function.

Original entry on oeis.org

6, 4, 14, 320, 571786, 469930223859, 260342286471149560589985, 110737149164265654381526929767261159120340941327, 13640751783742037895965317463353502238298025074840803034014381823166601709380037834476485770683
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 40]]

A020797 Decimal expansion of 1/sqrt(40).

Original entry on oeis.org

1, 5, 8, 1, 1, 3, 8, 8, 3, 0, 0, 8, 4, 1, 8, 9, 6, 6, 5, 9, 9, 9, 4, 4, 6, 7, 7, 2, 2, 1, 6, 3, 5, 9, 2, 6, 6, 8, 5, 9, 7, 7, 7, 5, 6, 9, 6, 6, 2, 6, 0, 8, 4, 1, 3, 4, 2, 8, 7, 5, 2, 4, 2, 6, 3, 9, 6, 2, 9, 7, 2, 1, 9, 3, 1, 9, 6, 1, 9, 1, 1, 0, 6, 7, 2, 1, 2, 4, 0, 5, 4, 1, 8, 9, 6, 5, 0, 1, 4
Offset: 0

Views

Author

Keywords

Comments

With offset 1, decimal expansion of sqrt(5/2). - Eric Desbiaux, May 01 2008
sqrt(5/2) appears as a coordinate in a degree-5 integration formula on 13 points in the unit sphere [Stroud & Secrest]. - R. J. Mathar, Oct 12 2011
With offset 2, decimal expansion of sqrt(250). - Michel Marcus, Nov 04 2013
From Wolfdieter Lang, Nov 21 2017: (Start)
The regular continued fraction of 1/sqrt(40) = 1/(2*sqrt(10)) is [0; 6, 3, repeat(12, 3)], and the convergents are given by A(n-1)/B(n-1), n >= 0, with A(-1) = 0, A(n-1) = A041067(n) and B(-1) = 1, B(n-1) = A041066(n).
The regular continued fraction of sqrt(5/2) = sqrt(10)/2 is [1; repeat(1, 1, 2)], and the convergents are given in A295333/A295334.
sqrt(10)/2 is one of the catheti of the rectangular triangle with hypotenuse sqrt(13)/2 = A295330 and the other cathetus sqrt(3)/2 = A010527. This can be constructed from a regular hexagon inscribed in a circle with a radius of 1 unit. If the vertex V_0 has coordinates (x, y) = (1, 0) and the midpoint M_4 = (0, -sqrt(3)/2) then the point L = (sqrt(10)/2, 0) is obtained as intersection of the x-axis and a circle around M_4 with radius taken from the distance between M_4 and V_1 = (1/2, sqrt(3)/2) which is sqrt(13)/2. (End)

Examples

			1/sqrt(40) = 0.15811388300841896659994467722163592668597775696626084134287...
sqrt(5/2) = 1.5811388300841896659994467722163592668597775696626084134287...
sqrt(250) = 15.811388300841896659994467722163592668597775696626084134287...
		

Crossrefs

Cf. A010467 (sqrt(10)), A010527, A010494 (sqrt(40)), A041067/A041066, A295330, A295333/A295334.

Programs

Formula

Equals Re(sqrt(5*i)/10) = Im(sqrt(5*i)/10). - Karl V. Keller, Jr., Sep 01 2020
Equals A010467/20. - R. J. Mathar, Feb 23 2021

A132677 Period 3: repeat [1, 2, -3].

Original entry on oeis.org

1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3, 1, 2, -3
Offset: 0

Views

Author

Paul Curtz, Nov 15 2007

Keywords

Comments

a(n) is proportional to its 6n-th differences.
Nonsimple continued fraction expansion of 1+sqrt(2/5) = 1.63245553... (see A010494). - R. J. Mathar, Mar 08 2012

Crossrefs

Programs

Formula

G.f.: (1+3*x)/(1+x+x^2). - Jaume Oliver Lafont, Mar 24 2009
a(n) = cos(2*Pi*n/3) + 5*sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011
a(n) + a(n-1) + a(n-2) = 0 for n > 1, a(n) = a(n-3) for n > 2. - Wesley Ivan Hurt, Jul 01 2016

A041066 Numerators of continued fraction convergents to sqrt(40).

Original entry on oeis.org

6, 19, 234, 721, 8886, 27379, 337434, 1039681, 12813606, 39480499, 486579594, 1499219281, 18477210966, 56930852179, 701647437114, 2161873163521, 26644125399366, 82094249361619, 1011775117738794
Offset: 0

Views

Author

Keywords

Comments

With a(-1) = 1, a(n-1) gives, for n >= 0, the denominator of the convergents to 1/sqrt(40) = 1/(2*sqrt(10)). - Wolfdieter Lang, Nov 21 2017

Crossrefs

Cf. A041067 (denominators), A010494, A020797 (1/sqrt(40)).

Programs

Formula

G.f.: -(x+2)*(x^2-8*x-3) / ((x^2-6*x-1)*(x^2+6*x-1)). - Colin Barker, Nov 04 2013

A041067 Denominators of continued fraction convergents to sqrt(40).

Original entry on oeis.org

1, 3, 37, 114, 1405, 4329, 53353, 164388, 2026009, 6242415, 76934989, 237047382, 2921503573, 9001558101, 110940200785, 341822160456, 4212806126257, 12980240539227, 159975692596981, 492907318330170, 6074863512559021, 18717497856007233, 230684837784645817
Offset: 0

Views

Author

Keywords

Comments

With a(-1) = 0, a(n-1) gives, for n >= 0, the numerator of the convergents to 1/sqrt(40) = 1/(2*sqrt(10)) = A020797. - Wolfdieter Lang, Nov 21 2017

Crossrefs

Cf. A010494, A041066 (numerators).

Programs

  • Magma
    I:=[1, 3, 37, 114]; [n le 4 select I[n] else 38*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[40],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011 *)
    Denominator[Convergents[Sqrt[40],30]] (* Harvey P. Dale, Sep 12 2013 *)
    CoefficientList[Series[-(x^2 - 3 x - 1)/((x^2 - 6 x - 1)(x^2 + 6 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2013 *)

Formula

G.f.: -(x^2-3*x-1) / ((x^2-6*x-1)*(x^2+6*x-1)). - Colin Barker, Nov 12 2013
a(n) = 38*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013

Extensions

More terms from Colin Barker, Nov 12 2013

A337092 Decimal expansion of sqrt(40/Pi).

Original entry on oeis.org

3, 5, 6, 8, 2, 4, 8, 2, 3, 2, 3, 0, 5, 5, 4, 2, 2, 2, 9, 0, 7, 7, 9, 3, 2, 7, 4, 5, 1, 3, 0, 1, 6, 5, 1, 8, 0, 7, 8, 8, 4, 0, 5, 8, 4, 1, 1, 4, 3, 9, 0, 6, 9, 4, 3, 7, 1, 8, 5, 4, 7, 6, 9, 1, 6, 9, 1, 0, 6, 1, 5, 5, 9, 0, 6, 0, 8, 6, 1, 5, 5, 0, 5, 1, 9, 6
Offset: 1

Views

Author

Peter Munn, Aug 15 2020

Keywords

Comments

A gauge point marked c^1 or c_1 ("c" with a superscripted or subscripted "1") on slide rule calculating devices in the 20th century. The Pickworth reference notes its use "in calculating the contents of cylinders".

Examples

			3.568248232305...
		

References

  • C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London, 1945, p. 53, Gauge Points.

Crossrefs

Programs

  • Maple
    evalf(sqrt(40.0/Pi)) ; # R. J. Mathar, Sep 02 2020
  • Mathematica
    RealDigits[Sqrt[40/Pi], 10, 100][[1]] (* Amiram Eldar, Aug 15 2020 *)
  • PARI
    sqrt(40/Pi) \\ Michel Marcus, Aug 19 2020

Formula

Equals A010494/A002161 = 2*sqrt(10*A049541).

A040033 Continued fraction for sqrt(40).

Original entry on oeis.org

6, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3, 12, 3
Offset: 0

Views

Author

Keywords

Examples

			6.3245553203367586639977870... = 6 + 1/(3 + 1/(12 + 1/(3 + 1/(12 + ...)))). - _Harry J. Smith_, Jun 05 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010494 (decimal expansion), A040005.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[40],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
    LinearRecurrence[{0,1},{6,3,12},100] (* or *) PadRight[{6},100,{12,3}] (* Harvey P. Dale, Mar 03 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 32000); x=contfrac(sqrt(40)); for (n=0, 20000, write("b040033.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 05 2009

Formula

From Stefano Spezia, Jul 27 2025: (Start)
a(n) = 3*A040005(n).
G.f.: 3*(2 + x + 2*x^2)/(1 - x^2). (End)

A171539 Decimal expansion of sqrt(6/35).

Original entry on oeis.org

4, 1, 4, 0, 3, 9, 3, 3, 5, 6, 0, 5, 4, 1, 2, 5, 3, 0, 6, 7, 7, 6, 7, 6, 1, 1, 8, 7, 7, 6, 2, 7, 9, 1, 9, 2, 0, 8, 9, 7, 1, 8, 0, 8, 2, 1, 3, 5, 9, 7, 0, 6, 5, 9, 6, 7, 7, 0, 2, 6, 4, 2, 3, 0, 6, 0, 5, 1, 8, 4, 1, 0, 6, 4, 7, 2, 4, 8, 0, 1, 2, 0, 4, 8, 9, 3, 0, 3, 7, 6, 9, 1, 4, 3, 8, 9, 0, 7, 1, 3, 6, 4, 3, 7, 2
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <2 3/2 ; -2 3/2 | 5/2 -1/2>.

Examples

			sqrt(6/35) = sqrt(210)/35 = 0.414039335605412530677676118776...
		

Programs

  • Mathematica
    RealDigits[Sqrt[6/35],10,120][[1]] (* Harvey P. Dale, Jun 09 2023 *)

Formula

Showing 1-8 of 8 results.