cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A248244 Egyptian fraction representation of sqrt(15) (A010472) using a greedy function.

Original entry on oeis.org

3, 2, 3, 26, 842, 1210718, 3125731485713, 19754948045006045983659938, 1065761639370207788402744631308304462734917602085737, 324026619188969581072902747191745217929877633476958459802312813323913819842709323919885352524528244937458
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 15]]

A010513 Decimal expansion of square root of 60.

Original entry on oeis.org

7, 7, 4, 5, 9, 6, 6, 6, 9, 2, 4, 1, 4, 8, 3, 3, 7, 7, 0, 3, 5, 8, 5, 3, 0, 7, 9, 9, 5, 6, 4, 7, 9, 9, 2, 2, 1, 6, 6, 5, 8, 4, 3, 4, 1, 0, 5, 8, 3, 1, 8, 1, 6, 5, 3, 1, 7, 5, 1, 4, 7, 5, 3, 2, 2, 2, 6, 9, 6, 6, 1, 8, 3, 8, 7, 3, 9, 5, 8, 0, 6, 7, 0, 3, 8, 5, 7, 4, 7, 5, 3, 7, 1, 7, 3, 4, 7, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 7 followed by {1, 2, 1, 14} repeated. - Harry J. Smith, Jun 07 2009
With a different offset, decimal expansion of 0.6. In a unimodal distribution, the mean and median differ by at most 0.6 standard deviations (and this is sharp), see Basu & DasGupta. - Charles R Greathouse IV, Oct 01 2024

Examples

			7.745966692414833770358530799564799221665843410583181653175147532226966....
		

Crossrefs

Cf. A040052 (continued fraction).

Programs

  • Mathematica
    RealDigits[N[Sqrt[60],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 25 2011 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(60); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010513.txt", n, " ", d)); } \\ Harry J. Smith, Jun 07 2009

Formula

Equals 10 * sqrt(3/5) = 10 * Sum_{k>=0} (-1)^k * binomial(2*k,k)/6^k. - Amiram Eldar, Aug 03 2020
Equals 2*A010472 = A011053^2 = 30*A020772 = 1/A020817. - Hugo Pfoertner, Oct 02 2024

A140239 Decimal expansion of 3*sqrt(15)/4.

Original entry on oeis.org

2, 9, 0, 4, 7, 3, 7, 5, 0, 9, 6, 5, 5, 5, 6, 2, 6, 6, 3, 8, 8, 4, 4, 4, 9, 0, 4, 9, 8, 3, 6, 7, 9, 9, 7, 0, 8, 1, 2, 4, 6, 9, 1, 2, 7, 8, 9, 6, 8, 6, 9, 3, 1, 1, 9, 9, 4, 0, 6, 8, 0, 3, 2, 4, 5, 8, 5, 1, 1, 2, 3, 1, 8, 9, 5, 2, 7, 3, 4, 2, 7, 5, 1, 3, 9, 4, 6, 5, 5, 3, 2, 6, 4, 4, 0, 0, 5, 1, 3, 8, 4, 3, 7, 2, 2
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Area of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.
This is the area of the ninth-smallest triangle with integer side lengths, or the eighth-smallest triangle if two smaller triangles with the same area are counted only once (see A331251). - Hugo Pfoertner, Feb 12 2020

Examples

			2.90473750965556266388444904983679970812469127896869311994068032458511231895...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3Sqrt[15])/4,10,120][[1]] (* Harvey P. Dale, Apr 03 2013 *)

Formula

3*sqrt(15)/4 = 3*A010472/4.

A140246 Decimal expansion of sqrt(15)/6.

Original entry on oeis.org

6, 4, 5, 4, 9, 7, 2, 2, 4, 3, 6, 7, 9, 0, 2, 8, 1, 4, 1, 9, 6, 5, 4, 4, 2, 3, 3, 2, 9, 7, 0, 6, 6, 6, 0, 1, 8, 0, 5, 4, 8, 6, 9, 5, 0, 8, 8, 1, 9, 3, 1, 8, 0, 4, 4, 3, 1, 2, 6, 2, 2, 9, 4, 3, 5, 2, 2, 4, 7, 1, 8, 1, 9, 8, 9, 4, 9, 6, 5, 0, 5, 5, 8, 6, 5, 4, 7, 8, 9, 6, 1, 4, 3, 1, 1, 2, 2, 5, 2, 9, 8, 6, 0, 5, 0
Offset: 0

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Inradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. Per the Weisstein link, the inradius is the area divided by the semiperimeter.

Examples

			0.64549722436790281419654423329706660180548695088193180443126229435224718198...
		

Crossrefs

Equals sqrt(A331257(8)/A331258(8)) (squared inradii of triangles with integer sides).

Programs

  • Mathematica
    RealDigits[Sqrt[15]/6,10,120][[1]] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    sqrt(15)/6

Formula

sqrt(15)/6 = A010472/6 = 2*A140239/9.

A140248 Decimal expansion of 0.3 * sqrt(15).

Original entry on oeis.org

1, 1, 6, 1, 8, 9, 5, 0, 0, 3, 8, 6, 2, 2, 2, 5, 0, 6, 5, 5, 5, 3, 7, 7, 9, 6, 1, 9, 9, 3, 4, 7, 1, 9, 8, 8, 3, 2, 4, 9, 8, 7, 6, 5, 1, 1, 5, 8, 7, 4, 7, 7, 2, 4, 7, 9, 7, 6, 2, 7, 2, 1, 2, 9, 8, 3, 4, 0, 4, 4, 9, 2, 7, 5, 8, 1, 0, 9, 3, 7, 1, 0, 0, 5, 5, 7, 8, 6, 2, 1, 3, 0, 5, 7, 6, 0, 2, 0, 5, 5, 3, 7, 4, 8, 9
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Exradius opposite the side of length 2 of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.
Multiplied by 10, this is sqrt(135). - Alonso del Arte, Jan 06 2013

Examples

			1.16189500386222506555377961993471988324987651158747724797627212983404492758...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3/10)Sqrt[15], 10, 105][[1]] (* Alonso del Arte, Jan 06 2013 *)
  • PARI
    0.3*sqrt(15)

Formula

0.3*sqrt(15) = 0.3*A010472 = 0.4*A140239 = 0.6*A088543 = 0.2*A140249.

A140247 Decimal expansion of 8/sqrt(15).

Original entry on oeis.org

2, 0, 6, 5, 5, 9, 1, 1, 1, 7, 9, 7, 7, 2, 8, 9, 0, 0, 5, 4, 2, 8, 9, 4, 1, 5, 4, 6, 5, 5, 0, 6, 1, 3, 1, 2, 5, 7, 7, 7, 5, 5, 8, 2, 4, 2, 8, 2, 2, 1, 8, 1, 7, 7, 4, 1, 8, 0, 0, 3, 9, 3, 4, 1, 9, 2, 7, 1, 9, 0, 9, 8, 2, 3, 6, 6, 3, 8, 8, 8, 1, 7, 8, 7, 6, 9, 5, 3, 2, 6, 7, 6, 5, 7, 9, 5, 9, 2, 0, 9, 5, 5, 5, 3, 6
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Circumradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.

Examples

			2.06559111797728900542894154655061312577755824282218177418003934192719098236...
		

Crossrefs

Equals sqrt(A331227(10)/A331228(10)) = sqrt(A331227(11)/A331228(11)), A331254, A331255, A331256 (list of triangles with integer sides sorted by circumradius).

Programs

  • Mathematica
    RealDigits[8/Sqrt[15],10,120][[1]] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    8/sqrt(15)

Formula

8/sqrt(15) = 8/A010472.

A140249 Decimal expansion of 3*sqrt(15)/2.

Original entry on oeis.org

5, 8, 0, 9, 4, 7, 5, 0, 1, 9, 3, 1, 1, 1, 2, 5, 3, 2, 7, 7, 6, 8, 8, 9, 8, 0, 9, 9, 6, 7, 3, 5, 9, 9, 4, 1, 6, 2, 4, 9, 3, 8, 2, 5, 5, 7, 9, 3, 7, 3, 8, 6, 2, 3, 9, 8, 8, 1, 3, 6, 0, 6, 4, 9, 1, 7, 0, 2, 2, 4, 6, 3, 7, 9, 0, 5, 4, 6, 8, 5, 5, 0, 2, 7, 8, 9, 3, 1, 0, 6, 5, 2, 8, 8, 0, 1, 0, 2, 7, 6, 8, 7, 4, 4, 5
Offset: 1

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Exradius opposite the side of length 4 of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link.

Examples

			5.80947501931112532776889809967359941624938255793738623988136064917022463790...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[3 Sqrt[15]/2,10,100]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    3*sqrt(15)/2

Formula

3*sqrt(15)/2 = 3*A010472/2 = 2*A140239 = 3*A088543 = 5*A140248.

A092294 Decimal expansion of 3 + sqrt(15).

Original entry on oeis.org

6, 8, 7, 2, 9, 8, 3, 3, 4, 6, 2, 0, 7, 4, 1, 6, 8, 8, 5, 1, 7, 9, 2, 6, 5, 3, 9, 9, 7, 8, 2, 3, 9, 9, 6, 1, 0, 8, 3, 2, 9, 2, 1, 7, 0, 5, 2, 9, 1, 5, 9, 0, 8, 2, 6, 5, 8, 7, 5, 7, 3, 7, 6, 6, 1, 1, 3, 4, 8, 3, 0, 9, 1, 9, 3, 6, 9, 7, 9, 0, 3, 3, 5, 1, 9, 2, 8, 7, 3, 7, 6, 8, 5, 8, 6, 7, 3, 5, 1, 7, 9
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n +n/(n +n/(n +n/(n +....))) for n = 6. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			6.87298334620741688...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

Formula

Equals A010472 plus 3. - R. J. Mathar, Sep 08 2008
Equals 1/A176016 + 6. - Hugo Pfoertner, Mar 19 2024

A088543 Decimal expansion of sqrt(15)/2.

Original entry on oeis.org

1, 9, 3, 6, 4, 9, 1, 6, 7, 3, 1, 0, 3, 7, 0, 8, 4, 4, 2, 5, 8, 9, 6, 3, 2, 6, 9, 9, 8, 9, 1, 1, 9, 9, 8, 0, 5, 4, 1, 6, 4, 6, 0, 8, 5, 2, 6, 4, 5, 7, 9, 5, 4, 1, 3, 2, 9, 3, 7, 8, 6, 8, 8, 3, 0, 5, 6, 7, 4, 1, 5, 4, 5, 9, 6, 8, 4, 8, 9, 5, 1, 6, 7, 5, 9, 6, 4, 3, 6, 8, 8, 4, 2, 9, 3, 3, 6, 7, 5, 8, 9, 5, 8, 1, 5
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Nov 16 2003

Keywords

Comments

This is the ratio of the base of an isosceles triangle to its height when the other two sides are each equal to twice the base.
Exradius opposite the side of length 3 of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. See formulas in the Weisstein link. - Rick L. Shepherd, May 14 2008

Examples

			1.93649167310370844258963269989119980541646085264579541329378688305674154596...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sqrt[15]/2, 10, 100]] (* Paolo Xausa, Jun 18 2024 *)

Formula

sqrt(15)/2 = A010472/2 = A140249/3. - Rick L. Shepherd, May 14 2008

Extensions

More terms from Rick L. Shepherd, May 14 2008

A176110 Decimal expansion of sqrt(255).

Original entry on oeis.org

1, 5, 9, 6, 8, 7, 1, 9, 4, 2, 2, 6, 7, 1, 3, 1, 1, 9, 9, 9, 0, 7, 0, 2, 4, 5, 1, 7, 6, 9, 8, 0, 6, 1, 3, 8, 4, 1, 5, 6, 7, 3, 4, 9, 7, 0, 4, 3, 7, 5, 4, 2, 6, 6, 7, 3, 2, 3, 6, 8, 3, 7, 6, 4, 6, 0, 6, 2, 3, 9, 4, 5, 2, 5, 8, 7, 6, 3, 4, 2, 9, 2, 2, 8, 4, 6, 5, 6, 2, 3, 1, 1, 4, 2, 5, 8, 3, 9, 1, 9, 3, 7, 5, 9, 2
Offset: 2

Views

Author

Klaus Brockhaus, Apr 10 2010

Keywords

Comments

Continued fraction expansion of sqrt(255) is A040239.

Examples

			sqrt(255) = 15.96871942267131199907...
		

Crossrefs

Cf. A010472 (decimal expansion of sqrt(15)), A010473 (decimal expansion of sqrt(17)), A040239.

Programs

  • Mathematica
    RealDigits[Sqrt[255],10,120][[1]] (* Harvey P. Dale, Mar 22 2017 *)
Showing 1-10 of 30 results. Next