cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A248285 Egyptian fraction representation of sqrt(60) (A010513) using a greedy function.

Original entry on oeis.org

7, 2, 5, 22, 1953, 8757320, 200363231947338, 251498638872293007053426171621, 66042587251601360877390227281939923689168739166891158256860, 4700611214316865673372383919277278315652700484280159329574134292008149533706899635266740297016908819979207833123794661
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Cf. A010513 (decimal expansion), A040052 (continued fraction).
Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 60]]

A372267 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 4.

Original entry on oeis.org

3, 3, 9, 9, 8, 1, 0, 4, 3, 5, 8, 4, 8, 5, 6, 2, 6, 4, 8, 0, 2, 6, 6, 5, 7, 5, 9, 1, 0, 3, 2, 4, 4, 6, 8, 7, 2, 0, 0, 5, 7, 5, 8, 6, 9, 7, 7, 0, 9, 1, 4, 3, 5, 2, 5, 9, 2, 9, 5, 3, 9, 7, 6, 8, 2, 1, 0, 2, 0, 0, 3, 0, 4, 6, 3, 2, 3, 7, 0, 3, 4, 4, 7, 7, 8, 7, 5
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.339981043584856264802665759103244687200575869770914352592953...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[4, #] &, 3], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 35*x^4 - 30*x^2 + 3 = 0.
Equals sqrt((3-2*sqrt(6/5))/7).

A372268 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 4.

Original entry on oeis.org

8, 6, 1, 1, 3, 6, 3, 1, 1, 5, 9, 4, 0, 5, 2, 5, 7, 5, 2, 2, 3, 9, 4, 6, 4, 8, 8, 8, 9, 2, 8, 0, 9, 5, 0, 5, 0, 9, 5, 7, 2, 5, 3, 7, 9, 6, 2, 9, 7, 1, 7, 6, 3, 7, 6, 1, 5, 7, 2, 1, 9, 2, 0, 9, 0, 6, 5, 2, 9, 4, 7, 1, 4, 9, 5, 0, 4, 8, 8, 6, 5, 7, 0, 4, 1, 6, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.861136311594052575223946488892809505095725379629717637615721...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[4, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 35*x^4 - 30*x^2 + 3 = 0.
Equals sqrt((3+2*sqrt(6/5))/7).

A372269 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 5.

Original entry on oeis.org

5, 3, 8, 4, 6, 9, 3, 1, 0, 1, 0, 5, 6, 8, 3, 0, 9, 1, 0, 3, 6, 3, 1, 4, 4, 2, 0, 7, 0, 0, 2, 0, 8, 8, 0, 4, 9, 6, 7, 2, 8, 6, 6, 0, 6, 9, 0, 5, 5, 5, 9, 9, 5, 6, 2, 0, 2, 2, 3, 1, 6, 2, 7, 0, 5, 9, 4, 7, 1, 1, 8, 5, 3, 6, 7, 7, 5, 5, 2, 9, 1, 0, 3, 5, 8, 0, 3
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.538469310105683091036314420700208804967286606905559956202231...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[5, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 63*x^4 - 70*x^2 + 15 = 0.
Equals sqrt(5-2*sqrt(10/7))/3.

A372270 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 5.

Original entry on oeis.org

9, 0, 6, 1, 7, 9, 8, 4, 5, 9, 3, 8, 6, 6, 3, 9, 9, 2, 7, 9, 7, 6, 2, 6, 8, 7, 8, 2, 9, 9, 3, 9, 2, 9, 6, 5, 1, 2, 5, 6, 5, 1, 9, 1, 0, 7, 6, 2, 5, 3, 0, 8, 6, 2, 8, 7, 3, 7, 6, 2, 2, 8, 6, 5, 4, 3, 7, 7, 0, 7, 9, 4, 9, 1, 6, 6, 8, 6, 8, 4, 6, 9, 4, 1, 1, 4, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.906179845938663992797626878299392965125651910762530862873762...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[5, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 63*x^4 - 70*x^2 + 15 = 0.
Equals sqrt(5+2*sqrt(10/7))/3.

A372271 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

2, 3, 8, 6, 1, 9, 1, 8, 6, 0, 8, 3, 1, 9, 6, 9, 0, 8, 6, 3, 0, 5, 0, 1, 7, 2, 1, 6, 8, 0, 7, 1, 1, 9, 3, 5, 4, 1, 8, 6, 1, 0, 6, 3, 0, 1, 4, 0, 0, 2, 1, 3, 5, 0, 1, 8, 1, 3, 9, 5, 1, 6, 4, 5, 7, 4, 2, 7, 4, 9, 3, 4, 2, 7, 5, 6, 3, 9, 8, 4, 2, 2, 4, 9, 2, 2, 4
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.238619186083196908630501721680711935418610630140021350181395...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372272 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

6, 6, 1, 2, 0, 9, 3, 8, 6, 4, 6, 6, 2, 6, 4, 5, 1, 3, 6, 6, 1, 3, 9, 9, 5, 9, 5, 0, 1, 9, 9, 0, 5, 3, 4, 7, 0, 0, 6, 4, 4, 8, 5, 6, 4, 3, 9, 5, 1, 7, 0, 0, 7, 0, 8, 1, 4, 5, 2, 6, 7, 0, 5, 8, 5, 2, 1, 8, 3, 4, 9, 6, 6, 0, 7, 1, 4, 3, 1, 0, 0, 9, 4, 4, 2, 8, 6
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.661209386466264513661399595019905347006448564395170070814526...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Middle positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372273 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

9, 3, 2, 4, 6, 9, 5, 1, 4, 2, 0, 3, 1, 5, 2, 0, 2, 7, 8, 1, 2, 3, 0, 1, 5, 5, 4, 4, 9, 3, 9, 9, 4, 6, 0, 9, 1, 3, 4, 7, 6, 5, 7, 3, 7, 7, 1, 2, 2, 8, 9, 8, 2, 4, 8, 7, 2, 5, 4, 9, 6, 1, 6, 5, 2, 6, 6, 1, 3, 5, 0, 0, 8, 4, 4, 2, 0, 0, 1, 9, 6, 2, 7, 6, 2, 8, 8
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.932469514203152027812301554493994609134765737712289824872549...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372274 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

4, 0, 5, 8, 4, 5, 1, 5, 1, 3, 7, 7, 3, 9, 7, 1, 6, 6, 9, 0, 6, 6, 0, 6, 4, 1, 2, 0, 7, 6, 9, 6, 1, 4, 6, 3, 3, 4, 7, 3, 8, 2, 0, 1, 4, 0, 9, 9, 3, 7, 0, 1, 2, 6, 3, 8, 7, 0, 4, 3, 2, 5, 1, 7, 9, 4, 6, 6, 3, 8, 1, 3, 2, 2, 6, 1, 2, 5, 6, 5, 5, 3, 2, 8, 3, 1, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.405845151377397166906606412076961463347382014099370126387043...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | this sequence, A372275, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.1, 0.5, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Smallest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372275 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

7, 4, 1, 5, 3, 1, 1, 8, 5, 5, 9, 9, 3, 9, 4, 4, 3, 9, 8, 6, 3, 8, 6, 4, 7, 7, 3, 2, 8, 0, 7, 8, 8, 4, 0, 7, 0, 7, 4, 1, 4, 7, 6, 4, 7, 1, 4, 1, 3, 9, 0, 2, 6, 0, 1, 1, 9, 9, 5, 5, 3, 5, 1, 9, 6, 7, 4, 2, 9, 8, 7, 4, 6, 7, 2, 1, 8, 0, 5, 1, 3, 7, 9, 2, 8, 2, 6
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.741531185599394439863864773280788407074147647141390260119955...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, this sequence, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.6, 0.8, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Middle positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.
Showing 1-10 of 24 results. Next