cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A248253 Egyptian fraction representation of sqrt(26) (A010481) using a greedy function.

Original entry on oeis.org

5, 11, 124, 21784, 767400293, 1762025132544871871, 3756028786746097256770667892973677974, 42736560346010944990137576929510502074095427615068285034007804816583306199
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 26]]

A040020 Continued fraction for sqrt(26).

Original entry on oeis.org

5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Keywords

Examples

			5.09901951359278483002822... = 5 + 1/(10 + 1/(10 + 1/(10 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010481 (decimal expansion), A041040/A041041 (convergents), A248253 (Egyptian fraction).

Programs

Formula

From Elmo R. Oliveira, Feb 06 2024: (Start)
a(n) = 10 for n >= 1.
G.f.: 5*(1+x)/(1-x).
E.g.f.: 10*exp(x) - 5.
a(n) = 5*A040000(n). (End)

A176537 Decimal expansion of 5 + sqrt(26).

Original entry on oeis.org

1, 0, 0, 9, 9, 0, 1, 9, 5, 1, 3, 5, 9, 2, 7, 8, 4, 8, 3, 0, 0, 2, 8, 2, 2, 4, 1, 0, 9, 0, 2, 2, 7, 8, 1, 9, 8, 9, 5, 6, 3, 7, 7, 0, 9, 4, 6, 0, 9, 9, 5, 9, 6, 4, 0, 7, 5, 8, 4, 9, 7, 0, 8, 0, 4, 4, 2, 5, 9, 3, 3, 6, 3, 2, 0, 6, 2, 2, 2, 4, 1, 9, 5, 5, 8, 8, 3, 4, 8, 8, 5, 1, 0, 9, 3, 9, 3, 2, 0, 0, 8, 3, 6, 1, 1
Offset: 2

Views

Author

Klaus Brockhaus, Apr 24 2010

Keywords

Comments

Continued fraction expansion of 5 + sqrt(26) is A010692.
This is the shape of a 10-extension rectangle; see A188640 for definitions. - Clark Kimberling, Apr 09 2011

Examples

			5+sqrt(26) = 10.09901951359278483002...
		

Crossrefs

Cf. A010481 (decimal expansion of sqrt(26)), A010692 (all 10's sequence).

Programs

  • Mathematica
    r=10; t = (r + (4+r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    RealDigits[5+Sqrt[26],10,120][[1]] (* Harvey P. Dale, Jun 24 2013 *)
  • PARI
    5+sqrt(26) \\ Michel Marcus, Jul 23 2018

Formula

a(n) = A010481(n-2) for n > 3.
Equals exp(arcsinh(5)), since arcsinh(x) = log(x + sqrt(x^2 + 1)). - Stanislav Sykora, Nov 01 2013
Equals limit_{n->infinity} S(n, 2*sqrt(2*13))/ S(n-1, 2*sqrt(2*13)), with the S-Chebyshev polynomilas (see A049310). - Wolfdieter Lang, Nov 15 2023

A188659 Decimal expansion of (1+sqrt(26))/5.

Original entry on oeis.org

1, 2, 1, 9, 8, 0, 3, 9, 0, 2, 7, 1, 8, 5, 5, 6, 9, 6, 6, 0, 0, 5, 6, 4, 4, 8, 2, 1, 8, 0, 4, 5, 5, 6, 3, 9, 7, 9, 1, 2, 7, 5, 4, 1, 8, 9, 2, 1, 9, 9, 1, 9, 2, 8, 1, 5, 1, 6, 9, 9, 4, 1, 6, 0, 8, 8, 5, 1, 8, 6, 7, 2, 6, 4, 1, 2, 4, 4, 4, 8, 3, 9, 1, 1, 7, 6, 6, 9, 7, 7, 0, 2, 1, 8, 7, 8, 6, 4, 0, 1, 6, 7, 2, 2, 3, 8, 0, 5, 1, 6, 4, 8, 2, 0, 7, 9, 8, 2, 1, 3, 2, 2, 8, 6, 3, 5, 5, 8, 6, 8
Offset: 1

Views

Author

Clark Kimberling, Apr 09 2011

Keywords

Comments

Decimal expansion of the shape of a (2/5)-extension rectangle; see A188640 for definitions of shape and r-extension rectangle. Briefly, shape=length/width, and an r-extension rectangle is composed of two rectangles of shape 1/r when r<1.
The continued fraction of the constant is 1, 4, 1, 1, 4, 1, ... = A146325.

Examples

			1.219803902718556966005644821804556397912754189219919281516994...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[26])/5, 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2011 *)

Formula

Equals exp(arcsinh(1/5)). - Amiram Eldar, Jul 04 2023

A041040 Numerators of continued fraction convergents to sqrt(26).

Original entry on oeis.org

5, 51, 515, 5201, 52525, 530451, 5357035, 54100801, 546365045, 5517751251, 55723877555, 562756526801, 5683289145565, 57395647982451, 579639768970075, 5853793337683201, 59117573145802085, 597029524795704051
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[26],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011*)
    CoefficientList[Series[(5 + x)/(1 - 10 x - x^2), {x, 0, 30}], x]  (* Vincenzo Librandi_, Oct 28 2013 *)

Formula

From Philippe Deléham, Nov 20 2008: (Start)
a(n) = 10*a(n-1) + a(n-2), a(0)=5, a(1)=51.
G.f.: (5+x)/(1-10*x-x^2). (End)

A177153 Decimal expansion of (21+5*sqrt(26))/19.

Original entry on oeis.org

2, 4, 4, 7, 1, 1, 0, 3, 9, 8, 3, 1, 3, 8, 9, 0, 7, 4, 4, 7, 4, 4, 2, 6, 9, 5, 0, 2, 3, 7, 4, 4, 1, 6, 3, 1, 3, 0, 4, 3, 0, 9, 7, 6, 1, 7, 3, 9, 4, 6, 3, 0, 6, 3, 3, 5, 7, 4, 9, 9, 2, 3, 1, 6, 9, 5, 4, 1, 9, 3, 0, 6, 1, 0, 6, 9, 0, 0, 6, 3, 6, 7, 2, 6, 0, 0, 9, 1, 8, 0, 2, 9, 1, 9, 4, 5, 5, 7, 9, 1, 6, 7, 3, 9, 9
Offset: 1

Views

Author

Klaus Brockhaus, May 03 2010

Keywords

Comments

Continued fraction expansion of (21+5*sqrt(26))/19 is A165207.

Examples

			(21+5*sqrt(26))/19 = 2.44711039831389074474...
		

Crossrefs

Cf. A010481 (decimal expansion of sqrt(26)), A165207 (repeat 2, 2, 4, 4).

Programs

  • Mathematica
    RealDigits[(21+5Sqrt[26])/19,10,120][[1]] (* Harvey P. Dale, Jul 26 2020 *)

A373053 Decimal expansion of sqrt(26)/2.

Original entry on oeis.org

2, 5, 4, 9, 5, 0, 9, 7, 5, 6, 7, 9, 6, 3, 9, 2, 4, 1, 5, 0, 1, 4, 1, 1, 2, 0, 5, 4, 5, 1, 1, 3, 9, 0, 9, 9, 4, 7, 8, 1, 8, 8, 5, 4, 7, 3, 0, 4, 9, 7, 9, 8, 2, 0, 3, 7, 9, 2, 4, 8, 5, 4, 0, 2, 2, 1, 2, 9, 6, 6, 8, 1, 6, 0, 3, 1, 1, 1, 2, 0, 9, 7, 7, 9, 4, 1, 7
Offset: 1

Views

Author

Gonzalo Martínez, May 20 2024

Keywords

Comments

sqrt(26)/2 is the area of a triangle of sides sqrt(5), sqrt(6) and sqrt(7), which is the smallest triangle whose sides are of the form sqrt(k), sqrt(k + 1) and sqrt(k + 2) and are all irrational numbers, where k is a positive integer.

Examples

			2.54950975679639241501411...
		

Crossrefs

Cf. A010481.

Programs

  • Mathematica
    RealDigits[Sqrt[26]/2, 10, 200][[1]]

Formula

Equals sqrt(13/2).
Showing 1-7 of 7 results.