A188640 Decimal expansion of e + sqrt(1+e^2).
5, 6, 1, 4, 6, 6, 8, 5, 6, 0, 0, 4, 9, 0, 5, 3, 4, 3, 9, 2, 5, 4, 7, 8, 2, 8, 3, 3, 1, 8, 6, 3, 3, 7, 3, 6, 0, 2, 3, 9, 8, 2, 0, 5, 6, 4, 1, 7, 1, 1, 3, 3, 9, 9, 6, 3, 2, 0, 4, 7, 8, 1, 4, 6, 4, 7, 2, 9, 3, 9, 2, 5, 6, 4, 2, 3, 9, 0, 0, 2, 6, 5, 0, 9, 8, 0, 4, 8, 4, 2, 8, 5, 5, 3, 4, 1, 5, 3, 5, 1, 3, 3, 7, 3, 7, 6, 0, 7, 6, 8, 8, 0, 8, 7, 8, 3, 3, 6, 0, 7, 7, 0, 0, 4, 0, 1, 8, 2, 9, 9
Offset: 1
A146325 Period 3: repeat [1, 4, 1].
1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1
Offset: 1
Comments
Continued fraction of (1 + sqrt(26))/5 = A188659.
Also the digital roots of centered 12-gonal numbers A003154. - Peter M. Chema, Dec 20 2023
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Magma
&cat [[1,4,1]^^40]; // Bruno Berselli, Jun 27 2016
-
Maple
seq(op([1, 4, 1]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016
-
Mathematica
Table[Round[N[4 (Cos[(2 n - 1) ArcTan[Sqrt[3]]])^2, 100]], {n, 1, 100}] PadLeft[{},111,{1,4,1}] (* Harvey P. Dale, Sep 18 2011 *)
-
PARI
a(n)=1+3*(n%3==2) \\ Jaume Oliver Lafont, Mar 24 2009
Formula
a(n) = 4*(cos((2*n - 1)*Pi/3))^2 = 4 - 4*(sin((2*n - 1)*Pi/3))^2.
a(n+3) = a(n).
a(n) = 2 - cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3).
O.g.f.: x*(1+4*x+x^2)/(1-x^3). [Richard Choulet, Nov 03 2008]
a(n) = 6 - a(n-1) - a(n-2) for n>2. - Ant King, Jun 12 2012
a(n) = (n mod 3)^(n mod 3). - Bruno Berselli, Jun 27 2016
a(n) = 1 + A021337(n) for n>0. - Wesley Ivan Hurt, Jul 01 2016
A188730 Decimal expansion of (2+sqrt(29))/5.
1, 4, 7, 7, 0, 3, 2, 9, 6, 1, 4, 2, 6, 9, 0, 0, 8, 0, 6, 2, 5, 0, 1, 4, 2, 0, 9, 8, 3, 0, 8, 0, 6, 5, 9, 1, 1, 2, 5, 9, 0, 2, 4, 0, 3, 2, 3, 2, 8, 9, 5, 7, 7, 6, 7, 5, 3, 6, 0, 7, 7, 7, 3, 4, 0, 0, 3, 3, 2, 9, 1, 9, 2, 5, 6, 5, 5, 3, 1, 7, 3, 8, 5, 7, 5, 3, 2, 6, 7, 5, 6, 3, 3, 5, 9, 6, 7, 0, 9, 6, 8, 8, 3, 7, 4, 0, 9, 6, 4, 3, 5, 8, 7, 8, 9, 1, 5, 2, 1, 2, 1, 5, 3, 7, 7, 2, 4, 2, 8, 0
Offset: 1
Comments
Decimal expansion of shape of a (4/5)-extension rectangle; see A188640 for definitions of shape and r-extension rectangle. Briefly, shape=length/width, and an r-extension rectangle is composed of two rectangles of shape 1/r when r<1.
The continued fractions of the constant are 1, 2, 10, 2, 1, 1, 2, 10, 2, 1, 1, 2, 10, 2, 1, 1, 2, 10, 2, 1, 1, 2...
Examples
1.4770329614269008062501420983080659112590240323289577675360...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
SetDefaultRealField(RealField(100)); (2+Sqrt(29))/5; // G. C. Greubel, Nov 01 2018
-
Maple
evalf((2+sqrt(29))/5,140); # Muniru A Asiru, Nov 01 2018
-
Mathematica
RealDigits[(2 + Sqrt[29])/5, 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2011 *)
-
PARI
default(realprecision, 100); (2+sqrt(29))/5 \\ G. C. Greubel, Nov 01 2018
A188729 Decimal expansion of (3+sqrt(109))/10.
1, 3, 4, 4, 0, 3, 0, 6, 5, 0, 8, 9, 1, 0, 5, 5, 0, 1, 7, 9, 7, 5, 7, 7, 5, 4, 0, 2, 2, 5, 4, 8, 0, 4, 7, 6, 7, 8, 2, 8, 9, 8, 4, 9, 8, 3, 7, 7, 1, 9, 7, 9, 9, 7, 5, 3, 0, 0, 5, 3, 9, 7, 2, 4, 9, 0, 0, 4, 7, 0, 3, 9, 1, 4, 6, 2, 8, 1, 3, 4, 9, 1, 8, 7, 4, 5, 3, 9, 7, 2, 9, 1, 1, 1, 2, 4, 3, 1, 3, 7, 8, 9, 7, 9, 8, 2, 2, 5, 3, 8, 2, 5, 5, 9, 3, 4, 8, 5, 1, 4, 9, 1, 6, 1, 9, 0, 3, 2, 6, 8
Offset: 1
Comments
Decimal expansion of shape of a (3/5)-extension rectangle; see A188640 for definitions of shape and r-extension rectangle.
Briefly, shape=length/width, and an r-extension rectangle is composed of two rectangles of shape 1/r when r<1.
The continued fraction of the constant is 1, 2, 1, 9, 1, 2, 1, 1, 2, 1, 9, 1, 2, 1, 1, 2, 1, 9, 1, 2, 1,...
Examples
1.3440306508910550179757754022548047678289849837719799753005...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
SetDefaultRealField(RealField(100)); (3+Sqrt(109))/10; // G. C. Greubel, Nov 01 2018
-
Maple
evalf((3+sqrt(109))/10,140); # Muniru A Asiru, Nov 01 2018
-
Mathematica
r = 3/5; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] ContinuedFraction[t, 120]
-
PARI
default(realprecision, 100); (3+sqrt(109))/10 \\ G. C. Greubel, Nov 01 2018
A344426 Decimal expansion of sqrt(26)/5.
1, 0, 1, 9, 8, 0, 3, 9, 0, 2, 7, 1, 8, 5, 5, 6, 9, 6, 6, 0, 0, 5, 6, 4, 4, 8, 2, 1, 8, 0, 4, 5, 5, 6, 3, 9, 7, 9, 1, 2, 7, 5, 4, 1, 8, 9, 2, 1, 9, 9, 1, 9, 2, 8, 1, 5, 1, 6, 9, 9, 4, 1, 6, 0, 8, 8, 5, 1, 8, 6, 7, 2, 6, 4, 1, 2, 4, 4, 4, 8, 3, 9, 1, 1, 7, 6, 6, 9, 7, 7, 0, 2
Offset: 1
Comments
sqrt(26)/5 is the length of the shortest line segment needed to dissect the unit square into 10 regions with equal areas if all the line segments start at the same vertex of the square.
Essentially the same as A188659. - R. J. Mathar, Jun 04 2021
Examples
1.01980390271855696600564482180...
Programs
-
Mathematica
RealDigits[Sqrt[26]/5, 10, 200][[1]]
Comments
Examples
Links
Crossrefs
Programs
Magma
Maple
Mathematica
PARI
Formula