2, 1, 0, 8, 1, 8, 5, 1, 0, 6, 7, 7, 8, 9, 1, 9, 5, 5, 4, 6, 6, 5, 9, 2, 9, 0, 2, 9, 6, 2, 1, 8, 1, 2, 3, 5, 5, 8, 1, 3, 0, 3, 6, 7, 5, 9, 5, 5, 0, 1, 4, 4, 5, 5, 1, 2, 3, 8, 3, 3, 6, 5, 6, 8, 5, 2, 8, 3, 9, 6, 2, 9, 2, 4, 2, 6, 1, 5, 8, 8, 1, 4, 2, 2, 9, 4, 9, 8, 7, 3, 8, 9, 1, 9, 5, 3, 3, 5, 3, 0
Offset: 1
A020765
Decimal expansion of 1/sqrt(8).
Original entry on oeis.org
3, 5, 3, 5, 5, 3, 3, 9, 0, 5, 9, 3, 2, 7, 3, 7, 6, 2, 2, 0, 0, 4, 2, 2, 1, 8, 1, 0, 5, 2, 4, 2, 4, 5, 1, 9, 6, 4, 2, 4, 1, 7, 9, 6, 8, 8, 4, 4, 2, 3, 7, 0, 1, 8, 2, 9, 4, 1, 6, 9, 9, 3, 4, 4, 9, 7, 6, 8, 3, 1, 1, 9, 6, 1, 5, 5, 2, 6, 7, 5, 9, 7, 1, 2, 5, 9, 6, 8, 8, 3, 5, 8, 1, 9, 1, 0, 3, 9, 3
Offset: 0
1/sqrt(8) = 0.353553390593273762200422181052424519642417968844237018294...
- Frederick Mosteller, Fifty challenging problems of probability, Dover, New York, 1965. See problem 38, pp. 10 and 58-60.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Michael L. Catalano-Johnson, Daniel Loeb and John Beebee, A cubical gift: Problem 10716, The American Mathematical Monthly, Vol. 108, No. 1 (Jan., 2001), pp. 81-82.
- Wikipedia, Tetrahedron.
- Wikipedia, Platonic solid.
- Index entries for algebraic numbers, degree 2
Cf. Midsphere radii in Platonic solids:
A378394
Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal icositetrahedron.
Original entry on oeis.org
2, 4, 1, 0, 6, 1, 3, 1, 4, 1, 6, 5, 3, 4, 0, 7, 6, 0, 6, 1, 5, 3, 6, 6, 5, 7, 8, 5, 4, 6, 5, 9, 4, 9, 1, 8, 5, 9, 8, 0, 3, 6, 2, 9, 0, 6, 0, 8, 9, 5, 9, 1, 9, 8, 3, 5, 2, 1, 7, 8, 6, 7, 1, 8, 7, 8, 5, 0, 3, 5, 1, 5, 8, 3, 3, 7, 2, 6, 7, 4, 1, 9, 4, 7, 8, 5, 0, 5, 5, 6
Offset: 1
2.410613141653407606153665785465949185980362906...
Cf.
A177870 and
A195702 (dihedral angles of a (small) rhombicuboctahedron).
-
First[RealDigits[ArcSec[Sqrt[32] - 7], 10, 100]] (* or *)
First[RealDigits[First[PolyhedronData["DeltoidalIcositetrahedron", "DihedralAngles"]], 10, 100]]
-
acos(-(4*sqrt(2) + 7)/17) \\ Charles R Greathouse IV, Feb 11 2025
A378351
Decimal expansion of the surface area of a (small) triakis octahedron with unit shorter edge length.
Original entry on oeis.org
1, 0, 6, 7, 2, 9, 4, 1, 8, 7, 3, 9, 8, 3, 5, 4, 6, 7, 0, 5, 1, 5, 0, 0, 0, 8, 9, 2, 2, 4, 9, 0, 1, 6, 0, 5, 6, 4, 5, 9, 0, 1, 0, 4, 2, 3, 7, 7, 1, 5, 4, 7, 1, 2, 6, 4, 4, 7, 5, 3, 7, 1, 0, 6, 3, 0, 4, 9, 1, 0, 1, 2, 1, 2, 7, 2, 8, 6, 0, 3, 3, 8, 6, 3, 8, 8, 2, 1, 1, 8
Offset: 2
10.672941873983546705150008922490160564590104237715...
Cf.
A377298 (surface area of a truncated cube with unit edge).
-
First[RealDigits[3*Sqrt[7 + Sqrt[32]], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TriakisOctahedron", "SurfaceArea"], 10, 100]]
A377342
Decimal expansion of the volume of a truncated octahedron with unit edge length.
Original entry on oeis.org
1, 1, 3, 1, 3, 7, 0, 8, 4, 9, 8, 9, 8, 4, 7, 6, 0, 3, 9, 0, 4, 1, 3, 5, 0, 9, 7, 9, 3, 6, 7, 7, 5, 8, 4, 6, 2, 8, 5, 5, 7, 3, 7, 5, 0, 0, 3, 0, 1, 5, 5, 8, 4, 5, 8, 5, 4, 1, 3, 4, 3, 7, 9, 0, 3, 9, 2, 5, 8, 5, 9, 8, 2, 7, 6, 9, 6, 8, 5, 6, 3, 1, 0, 8, 0, 3, 1, 0, 0, 2
Offset: 2
11.3137084989847603904135097936775846285573750030...
Cf.
A131594 (analogous for a regular octahedron).
-
First[RealDigits[8*Sqrt[2], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TruncatedOctahedron", "Volume"], 10, 100]]
A378353
Decimal expansion of the inradius of a (small) triakis octahedron with unit shorter edge length.
Original entry on oeis.org
8, 1, 9, 1, 4, 0, 6, 6, 3, 4, 0, 3, 2, 5, 7, 1, 6, 1, 7, 1, 5, 4, 9, 1, 3, 4, 5, 7, 3, 5, 6, 5, 3, 1, 6, 6, 2, 4, 1, 5, 5, 5, 2, 0, 3, 0, 6, 1, 3, 2, 0, 1, 6, 6, 7, 6, 5, 3, 7, 8, 7, 9, 1, 4, 2, 4, 2, 6, 4, 3, 4, 6, 2, 0, 6, 6, 0, 7, 8, 1, 0, 8, 8, 3, 4, 9, 9, 7, 1, 3
Offset: 0
0.81914066340325716171549134573565316624155520306132...
-
First[RealDigits[Sqrt[23/68 + Sqrt[32]/17], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TriakisOctahedron", "Inradius"], 10, 100]]
A041053
Denominators of continued fraction convergents to sqrt(32).
Original entry on oeis.org
1, 1, 2, 3, 32, 35, 67, 102, 1087, 1189, 2276, 3465, 36926, 40391, 77317, 117708, 1254397, 1372105, 2626502, 3998607, 42612572, 46611179, 89223751, 135834930, 1447573051, 1583407981, 3030981032, 4614389013
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,34,0,0,0,-1).
-
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[32],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011*)
Denominator[Convergents[Sqrt[32],30]] (* or *) LinearRecurrence[{0,0,0,34,0,0,0,-1},{1,1,2,3,32,35,67,102},30] (* Harvey P. Dale, Jun 15 2015 *)
A195286
Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(5,12,13).
Original entry on oeis.org
4, 0, 7, 9, 2, 1, 5, 6, 1, 0, 8, 7, 4, 2, 2, 7, 8, 6, 4, 0, 2, 2, 5, 7, 9, 2, 8, 7, 2, 1, 8, 2, 2, 5, 5, 9, 1, 6, 5, 1, 0, 1, 6, 7, 5, 6, 8, 7, 9, 6, 7, 7, 1, 2, 6, 0, 6, 7, 9, 7, 6, 6, 4, 3, 5, 4, 0, 7, 4, 6, 9, 0, 5, 6, 4, 9, 7, 7, 9, 3, 5, 6, 4, 7, 0, 6, 7, 9, 0, 8, 0, 8, 7, 5, 1, 4, 5, 6, 0, 6
Offset: 1
(A)=4.0792156108742278640225792872182255...
-
a = 5; b = 12; c = 13;
h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195286 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (B) A195288 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A010487 *)
(f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(A,B,C,I) A195289 *)
A195288
Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(5,12,13).
Original entry on oeis.org
4, 8, 0, 7, 4, 0, 1, 7, 0, 0, 6, 1, 8, 6, 5, 2, 3, 9, 0, 8, 2, 5, 6, 2, 8, 3, 5, 6, 6, 2, 7, 3, 2, 7, 9, 2, 8, 3, 3, 5, 0, 6, 2, 0, 9, 8, 4, 6, 0, 3, 2, 8, 2, 8, 3, 6, 1, 3, 9, 3, 7, 4, 0, 8, 3, 0, 2, 8, 8, 9, 2, 6, 4, 3, 9, 0, 6, 8, 0, 5, 9, 3, 6, 0, 6, 1, 5, 8, 7, 7, 6, 0, 2, 4, 6, 5, 4, 2, 9, 0
Offset: 1
(C)=4.80740170061865239082562835...
-
a = 5; b = 12; c = 13;
h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195286 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (B) A195288 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A010487 *)
(f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(A,B,C,I) A195289 *)
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions