cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A248264 Egyptian fraction representation of sqrt(38) (A010492) using a greedy function.

Original entry on oeis.org

6, 7, 47, 3569, 13543237, 813461964457561, 7421316108781190769825230152615, 711253293828537228004750977021512448161146012227144474046636992, 2200029703970808428058199608953702518884689809814432014002394662129432102727790523039076189301028040002865113400234535183784056
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 38]]

A040031 Continued fraction for sqrt(38).

Original entry on oeis.org

6, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, 6
Offset: 0

Views

Author

Keywords

Examples

			6.1644140029689764502501923... = 6 + 1/(6 + 1/(12 + 1/(6 + 1/(12 + ...)))). - _Harry J. Smith_, Jun 04 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010492 (decimal expansion), A040001.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[38],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 38000); x=contfrac(sqrt(38)); for (n=0, 20000, write("b040031.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 04 2009

Formula

From Stefano Spezia, Jul 27 2025: (Start)
a(n) = 6*A040001(n).
G.f.: 6*(1 + x + x^2)/(1 - x^2). (End)

A041062 Numerators of continued fraction convergents to sqrt(38).

Original entry on oeis.org

6, 37, 450, 2737, 33294, 202501, 2463306, 14982337, 182251350, 1108490437, 13484136594, 82013310001, 997643856606, 6067876449637, 73812161252250, 448940843963137, 5461102288809894, 33215554576822501
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[38], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
    a0[n_] := (-3+Sqrt[19/2])*(37+6*Sqrt[38])^n-(6+Sqrt[38])/(2*(37+6*Sqrt[38])^n) // Simplify
    a1[n_] := (1/(37+6*Sqrt[38])^n+(37+6*Sqrt[38])^n)/2 // FullSimplify
    Flatten[MapIndexed[{a0[#], a1[#]}&, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
    LinearRecurrence[{0,74,0,-1},{6,37,450,2737},20] (* Harvey P. Dale, Oct 17 2020 *)

Formula

G.f.: -(x^3-6*x^2-37*x-6) / (x^4-74*x^2+1). - Colin Barker, Nov 04 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-3+sqrt(19/2))*(37+6*sqrt(38))^n-(6+sqrt(38))/(2*(37+6*sqrt(38))^n).
a1(n) = (1/(37+6*sqrt(38))^n+(37+6*sqrt(38))^n)/2. (End)

A041063 Denominators of continued fraction convergents to sqrt(38).

Original entry on oeis.org

1, 6, 73, 444, 5401, 32850, 399601, 2430456, 29565073, 179820894, 2187415801, 13304315700, 161839204201, 984339540906, 11973913695073, 72827821711344, 885907774231201, 5388274467098550, 65545201379413801, 398659482743581356, 4849458994302390073
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 6, 73, 444]; [n le 4 select I[n] else 74*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[38], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
    Denominator[Convergents[Sqrt[38], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
    a0[n_] := ((38+6*Sqrt[38])/(37+6*Sqrt[38])^n+(38-6*Sqrt[38])*(37+6*Sqrt[38])^n)/76 // Simplify
    a1[n_] := (-1/(37+6*Sqrt[38])^n+(37+6*Sqrt[38])^n)/(2*Sqrt[38]) // FullSimplify
    Flatten[MapIndexed[{a0[#],a1[#]}&, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
    LinearRecurrence[{0,74,0,-1},{1,6,73,444},30] (* Harvey P. Dale, Feb 29 2024 *)

Formula

G.f.: -(x^2-6*x-1) / (x^4-74*x^2+1). - Colin Barker, Nov 12 2013
a(n) = 74*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((38+6*sqrt(38))/(37+6*sqrt(38))^n+(38-6*sqrt(38))*(37+6*sqrt(38))^n)/76;
a1(n) = (-1/(37+6*sqrt(38))^n+(37+6*sqrt(38))^n)/(2*sqrt(38)). (End)

Extensions

More terms from Colin Barker, Nov 12 2013

A176459 Decimal expansion of (12+2*sqrt(38))/3.

Original entry on oeis.org

8, 1, 0, 9, 6, 0, 9, 3, 3, 5, 3, 1, 2, 6, 5, 0, 9, 6, 6, 8, 3, 3, 4, 6, 1, 5, 8, 7, 6, 3, 6, 1, 6, 2, 8, 1, 6, 8, 2, 3, 7, 4, 9, 3, 4, 8, 9, 6, 3, 0, 4, 9, 6, 9, 6, 5, 8, 3, 0, 4, 8, 0, 4, 8, 3, 0, 5, 5, 9, 9, 7, 6, 6, 8, 4, 2, 4, 4, 2, 8, 0, 8, 6, 4, 4, 4, 8, 6, 5, 3, 2, 7, 9, 9, 2, 6, 6, 6, 3, 0, 0, 9, 9, 0, 3
Offset: 1

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of (12+2*sqrt(38))/3 is A010732.

Examples

			(12+2*sqrt(38))/3 = 8.10960933531265096683...
		

Crossrefs

Cf. A010492 (decimal expansion of sqrt(38)), A010732 (repeat 8, 9).

Programs

A176521 Decimal expansion of (18+3*sqrt(38))/4.

Original entry on oeis.org

9, 1, 2, 3, 3, 1, 0, 5, 0, 2, 2, 2, 6, 7, 3, 2, 3, 3, 7, 6, 8, 7, 6, 4, 4, 2, 8, 6, 0, 9, 0, 6, 8, 3, 1, 6, 8, 9, 2, 6, 7, 1, 8, 0, 1, 7, 5, 8, 3, 4, 3, 0, 9, 0, 8, 6, 5, 5, 9, 2, 9, 0, 5, 4, 3, 4, 3, 7, 9, 9, 7, 3, 7, 6, 9, 7, 7, 4, 8, 1, 5, 9, 7, 2, 5, 0, 4, 7, 3, 4, 9, 3, 9, 9, 1, 7, 4, 9, 5, 8, 8, 6, 1, 4, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 23 2010

Keywords

Comments

Continued fraction expansion of (18+3*sqrt(38))/4 is A010732 preceded by 9.

Examples

			(18+3*sqrt(38))/4 = 9.12331050222673233768...
		

Crossrefs

Cf. A010492 (decimal expansion of sqrt(38)), A010732 (repeat 8, 9).

Programs

Showing 1-6 of 6 results.