cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A248288 Egyptian fraction representation of sqrt(63) (A010516) using a greedy function.

Original entry on oeis.org

7, 2, 3, 10, 256, 69688, 5330178475, 685643579227613855733, 19857919470304339362673575257858955364290957, 4322562711957148145852339662715119494243446939653452977452988955819120724647597129517346
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 63]]

A041111 Denominators of continued fraction convergents to sqrt(63).

Original entry on oeis.org

1, 1, 15, 16, 239, 255, 3809, 4064, 60705, 64769, 967471, 1032240, 15418831, 16451071, 245733825, 262184896, 3916322369, 4178507265, 62415424079, 66593931344, 994730462895, 1061324394239, 15853271982241
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 14 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • Mathematica
    Denominator/@Convergents[Sqrt[63],30] (* Harvey P. Dale, May 18 2011 *)
    CoefficientList[Series[(1 + x - x^2)/(1 - 16 x^2 + x^4), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 24 2013 *)

Formula

From Colin Barker, Jul 15 2012: (Start)
a(n) = 16*a(n-2) - a(n-4).
G.f.: (1+x-x^2)/(1-16*x^2+x^4). (End)
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(14) + sqrt(18) )/2 and beta = ( sqrt(14) - sqrt(18) )/2 be the roots of the equation x^2 - sqrt(14)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even. a(n) = Product_{k = 1..floor((n-1)/2)} ( 14 + 4*cos^2(k*Pi/n) ). Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 14*a(2*n) + a(2*n - 1). (End)

A040055 Continued fraction for sqrt(63).

Original entry on oeis.org

7, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1
Offset: 0

Views

Author

Keywords

Examples

			7.9372539331937717715048472... = 7 + 1/(1 + 1/(14 + 1/(1 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 07 2009
		

Crossrefs

Cf. A010516 (decimal expansion), A020820 (decimal expansion of 1/sqrt(63)).

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[63], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 25000); x=contfrac(sqrt(63)); for (n=0, 20000, write("b040055.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 07 2009

Formula

From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2^e) = 14, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 13/2^s). (End)

A377291 For each row n in array A374602(n, k), the asymptotic geometric growth factor of every A377290(n) terms, represented by its nearest integer.

Original entry on oeis.org

6, 14, 7, 98, 16, 34, 1442, 398, 194, 119, 30, 62, 4354, 1154, 115598, 322, 23, 155234, 48, 98, 10402, 2702, 64514, 727, 482, 3040, 1154, 2114, 70, 142, 21314, 5474, 2498, 1442, 16793602, 674, 48497294, 158402, 47, 48670, 96, 194, 39202, 9998, 1684802, 2599
Offset: 1

Views

Author

Charles L. Hohn, Oct 23 2024

Keywords

Comments

(a(n)^2-4)/A000037(n) is a square, and as such, a(n) is a member of row x of A298675(x, k), where x is the smallest value >= 3 such that (x^2-4)/A000037(n) is a square. E.g. for n=38: A000037(38)=44, x=20 ((20^2-4)/44 = 3^2), and a(38) = 158402 = A298675(20, 4).
The same row x of A298675(x, k) also results as integer solutions to g+(1/g) where g=(w*sqrt(d) + ceiling(w*sqrt(d)))/2 and d=A000037(n) for integers w >= 1. As such, it follows that g(n) can be expressed as a simple integer arithmetic transformation of sqrt(A000037(n)), e.g. g(1) = 2*sqrt(2)+3 (A156035), g(2) = 4*sqrt(3)+7 (A354129), g(3) = (3*sqrt(5)+7)/2 (A374883), g(4) = 20*sqrt(6)+49, and g(5) = 3*sqrt(7)+8 (A010516+8).

Examples

			For n = 5, the first few terms of A374602(5, k) are {4, 5, 11, 28, 62, 79, 175, 446, 988} and the period size is A377290(5) = 4, giving A374602(5, 1+4)/A374602(5, 1) = 62/4 = 15.5, 79/5 = 15.8, 175/11 = 15.909..., 446/28 = 15.928..., 988/62 = 15.935..., ..., to limit 15.937... -> g(5), from which g(5)+(1/g(5)) = 16 -> a(5).
		

Crossrefs

Formula

Growth factor g(n) = Lim_{k->oo}(A374602(n, k+A377290(n))/A374602(n, k)).
a(n) = round(g(n)) = ceiling(g(n)) = g(n)+(1/g(n)).
Inverse: g(n) = (sqrt(a(n)^2-4)+a(n))/2.
For d = A000037(n) and x in {1, 2, 4}, when d+x is a square (unless x==4 and d+x is even): a(n) = 4/x*d+2.
For d = A000037(n) and x in {-4, 1, 2, 4}, when n > 3 and d-x is a square (unless x==-4 and d-x is odd): a(n) = (4/abs(x))^2*d^2-16/x*d+2.

A020820 Decimal expansion of 1/sqrt(63).

Original entry on oeis.org

1, 2, 5, 9, 8, 8, 1, 5, 7, 6, 6, 9, 7, 4, 2, 4, 0, 9, 0, 7, 1, 5, 0, 5, 5, 1, 2, 0, 7, 8, 0, 6, 0, 0, 2, 0, 2, 7, 1, 9, 1, 7, 1, 0, 3, 9, 5, 6, 3, 0, 7, 1, 5, 1, 4, 4, 6, 1, 1, 1, 1, 6, 4, 7, 2, 3, 8, 6, 0, 4, 2, 0, 1, 5, 3, 8, 2, 3, 0, 2, 9, 8, 9, 3, 3, 5, 2, 0, 4, 2, 2, 1, 3, 0, 7, 3, 5, 0, 5
Offset: 0

Views

Author

Keywords

Examples

			0.1259881576697424090715055120780600202719171039563071...
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(1/sqrt(63)); # Wesley Ivan Hurt, Sep 01 2016
  • Mathematica
    RealDigits[Sqrt[1/63],10,120][[1]] (* Harvey P. Dale, Jun 14 2011 *)

Formula

1/sqrt(63) = 1/(3*sqrt(7)) = sqrt(7)/21.

A041110 Numerators of continued fraction convergents to sqrt(63).

Original entry on oeis.org

7, 8, 119, 127, 1897, 2024, 30233, 32257, 481831, 514088, 7679063, 8193151, 122383177, 130576328, 1950451769, 2081028097, 31084845127, 33165873224, 495407070263, 528572943487, 7895428279081, 8424001222568
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[63], 30]] (* Vincenzo Librandi, Oct 26 2013 *)
    LinearRecurrence[{0,16,0,-1},{7,8,119,127},30] (* Harvey P. Dale, Dec 17 2019 *)

Formula

a(n) = 16*a(n-2)-a(n-4). G.f.: (7+8*x+7*x^2-x^3)/(1-16*x^2+x^4). [Colin Barker, Jul 15 2012]
Showing 1-6 of 6 results.