cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A248297 Egyptian fraction representation of sqrt(73) (A010525) using a greedy function.

Original entry on oeis.org

8, 2, 23, 1904, 3644794, 253138275595730, 299921681006149892361129426137, 319157637936684764321170119844052189479588993114762538993037, 104022456806315370788933277888878173955194511356798258776365960524644747879084195850803592853844837028709668458856157018
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 73]]

A351480 Decimal expansion of (611 + sqrt(73))/36.

Original entry on oeis.org

1, 7, 2, 0, 9, 5, 5, 5, 6, 5, 9, 5, 9, 2, 1, 5, 3, 6, 4, 3, 5, 5, 1, 9, 9, 0, 2, 3, 1, 2, 8, 4, 4, 3, 6, 2, 8, 9, 8, 4, 9, 8, 4, 5, 9, 8, 1, 3, 7, 5, 9, 2, 4, 5, 0, 6, 7, 1, 9, 6, 8, 4, 7, 5, 7, 0, 4, 9, 2, 1, 2, 4, 6, 7, 2, 0, 3, 5, 3, 6, 0, 6, 6, 1, 4, 1, 1, 3, 8, 1
Offset: 2

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Examples

			17.2095556595921536435519902312844...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(611+Sqrt[73])/36,10,90]]

Formula

Equals lim_{n->oo} A082640(2, n)^(1/n).
Equals 288*x_2, where x_2 is the largest root of 5184*x^2 - 611*x + 18.

A351481 Decimal expansion of log_2((611 + sqrt(73))/36)/2.

Original entry on oeis.org

2, 0, 5, 2, 5, 6, 8, 9, 7, 1, 6, 1, 2, 7, 3, 5, 6, 6, 5, 1, 0, 7, 8, 7, 1, 5, 4, 0, 4, 7, 8, 6, 5, 5, 8, 7, 1, 0, 5, 3, 8, 4, 8, 7, 6, 2, 3, 7, 1, 2, 2, 1, 4, 3, 8, 8, 9, 2, 9, 8, 0, 3, 2, 7, 7, 4, 1, 7, 9, 0, 8, 2, 0, 0, 4, 1, 2, 0, 7, 1, 0, 4, 6, 5, 9, 3, 2, 3, 6, 3
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Examples

			2.052568971612735665107871540478655871...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[Log[2,(611+Sqrt[73])/36]/2,90]]]
  • PARI
    log((611 + sqrt(73))/36)/log(4) \\ Charles R Greathouse IV, Oct 31 2023

Formula

Equals log_2(alpha)/2, where alpha = lim_{n->oo} A082640(2, n)^(1/n).

A010151 Continued fraction for sqrt(73).

Original entry on oeis.org

8, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			8.544003745317531167871648326... = 8 + 1/(1 + 1/(1 + 1/(5 + 1/(5 + ...)))). - _Harry J. Smith_, Jun 08 2009
		

Crossrefs

Cf. A010525 Decimal expansion. - Harry J. Smith, Jun 08 2009

Programs

  • Mathematica
    ContinuedFraction[Sqrt[73],300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 20000); x=contfrac(sqrt(73)); for (n=0, 20000, write("b010151.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 08 2009

A176980 Decimal expansion of sqrt(365).

Original entry on oeis.org

1, 9, 1, 0, 4, 9, 7, 3, 1, 7, 4, 5, 4, 2, 8, 0, 0, 1, 7, 9, 1, 6, 8, 2, 9, 5, 7, 5, 2, 4, 9, 6, 6, 9, 1, 4, 1, 5, 3, 9, 6, 4, 7, 2, 3, 3, 1, 7, 6, 7, 9, 9, 7, 3, 6, 5, 2, 5, 8, 0, 8, 2, 1, 3, 4, 8, 7, 0, 0, 0, 1, 0, 7, 4, 9, 2, 6, 5, 5, 2, 1, 2, 9, 2, 6, 0, 7, 3, 2, 6, 4, 8, 2, 8, 5, 6, 5, 5, 6, 7, 9, 8, 9, 5, 1
Offset: 2

Views

Author

Klaus Brockhaus, Apr 30 2010

Keywords

Comments

Continued fraction expansion of sqrt(365) is A040345.

Examples

			sqrt(365) = 19.10497317454280017916...
		

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A010525 (decimal expansion of sqrt(73)), A176979 (decimal expansion of (15+sqrt(365))/10), A040345.

A041128 Numerators of continued fraction convergents to sqrt(73).

Original entry on oeis.org

8, 9, 17, 94, 487, 581, 1068, 17669, 18737, 36406, 200767, 1040241, 1241008, 2281249, 37740992, 40022241, 77763233, 428838406, 2221955263, 2650793669, 4872748932, 80614776581, 85487525513, 166102302094, 915999035983, 4746097482009, 5662096517992
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[73], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,2136,0,0,0,0,0,0,1},{8,9,17,94,487,581,1068,17669,18737,36406,200767,1040241,1241008,2281249},30] (* Harvey P. Dale, Jul 12 2023 *)

Formula

G.f.: -(x^13 -8*x^12 +9*x^11 -17*x^10 +94*x^9 -487*x^8 +581*x^7 +1068*x^6 +581*x^5 +487*x^4 +94*x^3 +17*x^2 +9*x +8) / (x^14 +2136*x^7 -1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041129 Denominators of continued fraction convergents to sqrt(73).

Original entry on oeis.org

1, 1, 2, 11, 57, 68, 125, 2068, 2193, 4261, 23498, 121751, 145249, 267000, 4417249, 4684249, 9101498, 50191739, 260060193, 310251932, 570312125, 9435245932, 10005558057, 19440803989, 107209578002, 555488693999, 662698272001, 1218186966000, 20153689728001
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,2,11,57,68,125,2068,2193,4261,23498,121751,145249, 267000]; [n le 14 select I[n] else 2136*Self(n-7)+Self(n-14): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
  • Mathematica
    Denominator/@Convergents[Sqrt[73], 50] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
    CoefficientList[Series[-(x^12 - x^11 + 2 x^10 - 11 x^9 + 57 x^8 - 68 x^7 + 125 x^6 + 68 x^5 + 57 x^4 + 11 x^3 + 2 x^2 + x + 1)/(x^14 + 2136 x^7 - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)

Formula

G.f.: -(x^12 -x^11 +2*x^10 -11*x^9 +57*x^8 -68*x^7 +125*x^6 +68*x^5 +57*x^4 +11*x^3 +2*x^2 +x +1) / (x^14 +2136*x^7 -1). - Colin Barker, Nov 13 2013
a(n) = 2136*a(n-7) + a(n-14). - Vincenzo Librandi, Dec 11 2013
Showing 1-7 of 7 results.