cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010685 Period 2: repeat (1,4).

Original entry on oeis.org

1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction of (1 + sqrt(2))/2. - R. J. Mathar, Nov 21 2011
This sequence can be generated by an infinite number of formulas all having the form a^(b*n) mod c subject to the following conditions. The number a can be congruent to either 2,3, or 4 mod 5 (A047202). If a is congruent to 2 or 3 mod 5, then b can be any number of the form 4k+2 and c = 5 or 15. If a is congruent to 4 mod 5, then b can be any number of the form 2k+1 and c = 5. For example: a(n) = 29^(13*n) mod 5, a(n) = 24^(11*n) mod 5, and a(n) = 22^(10*n) mod 15. - Gary Detlefs, May 19 2014

Crossrefs

Cf. sequences listed in Comments section of A283393.
Cf. A047202.

Programs

  • Magma
    [Modexp(4,n,5): n in [0..100]]; // G. C. Greubel, Nov 22 2021
  • Maple
    A010685 := proc(n)
        if type(n,'even') then
            1 ;
        else
            4;
        end if;
    end proc: # R. J. Mathar, Aug 03 2015
  • Mathematica
    Table[(5-3(-1)^n)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 26 2014 *)
    PadRight[{},120,{1,4}] (* Harvey P. Dale, Aug 08 2022 *)
  • PARI
    values(m)=my(v=[]);for(i=1,m,v=concat([1,4],v));v; /* Anders Hellström, Aug 03 2015 */
    
  • Sage
    [power_mod(4,n,5)for n in range(0,81)] # Zerinvary Lajos, Nov 26 2009
    

Formula

a(2n) = 1, a(2n+1) = 4.
From Paul Barry, Jun 03 2003: (Start)
G.f.: (1+4*x)/((1-x)*(1+x)).
E.g.f.: (5*exp(x) - 3*exp(-x))/2.
a(n) = (5 - 3*(-1)^n)/2.
a(n) = 4^((1-(-1)^n)/2) = 2^(1-(-1)^n) = 2/(2^((-1)^n)).
a(n) = 4^(ceiling(n/2) - floor(n/2)). (End)
a(n) = gcd((n-1)^2, (n+1)^2). - Paul Barry, Sep 16 2004
a(n) = A160700(A000302(n)). - Reinhard Zumkeller, Jun 10 2009
a(n) = 4^n mod 5. - Zerinvary Lajos, Nov 26 2009
a(n) = 4^(n mod 2). - Wesley Ivan Hurt, Mar 29 2014