cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A146523 Binomial transform of A010685.

Original entry on oeis.org

1, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2008

Keywords

Comments

Linked to A029609 by a Catalan transform.
Hankel transform is (1, -15, 0, 0, 0, 0, 0, 0, 0, ...).

Crossrefs

Programs

Formula

a(n) = 5*2^(n-1) for n >= 1, a(0) = 1.
a(n) = Sum_{k=0..n} A109466(n,k)*A029609(k).
a(n) = A084215(n+1) = A020714(n-1), n > 0. - R. J. Mathar, Nov 02 2008
G.f.: (1 + 3*x)/(1 - 2*x). - Vladimir Joseph Stephan Orlovsky, Jun 21 2011
G.f.: G(0), where G(k)= 1 + 3*x/(1 - 2*x/(2*x + 3*x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
E.g.f.: (5*exp(2*x) - 3)/2. - Stefano Spezia, Feb 20 2023

A080960 Third binomial transform of A010685 (period 2: repeat 1,4).

Original entry on oeis.org

1, 7, 34, 148, 616, 2512, 10144, 40768, 163456, 654592, 2619904, 10482688, 41936896, 167759872, 671064064, 2684305408, 10737319936, 42949476352, 171798298624, 687193980928, 2748777496576, 10995113132032, 43980458819584
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Crossrefs

Programs

  • Magma
    binomtf:=func< V | [ &+[ Binomial(i-1, k-1)*V[k]: k in [1..i] ]: i in [1..#V] ] >; binomtf(binomtf(binomtf(&cat[ [1, 4]: n in [1..12] ]))); // Klaus Brockhaus, Nov 26 2009
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==4a[n-1]+3*2^(n-1)},a,{n,30}] (* or *) LinearRecurrence[{6,-8},{1,7},30] (* Harvey P. Dale, Nov 12 2012 *)
    CoefficientList[Series[(1+x)/((1-2x)(1-4x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
  • Sage
    [2^(n-1)*(5*2^n -3) for n in (0..30)] # G. C. Greubel, Nov 23 2021

Formula

a(n) = 4*a(n-1) + 3*2^(n-1).
a(n) = (5/2)*4^n - (3/2)*2^n.
G.f.: (1+x)/((1-2*x)*(1-4*x)). - Klaus Brockhaus, Nov 26 2009
a(n) = 6*a(n-1) - 8*a(n-2), a(0)=1, a(1)=7. - Harvey P. Dale, Nov 12 2012
E.g.f.: exp(2*x)*(5*exp(2*x) - 3)/2. - G. C. Greubel, Nov 23 2021

Extensions

Definition corrected, edited by Klaus Brockhaus, Nov 26 2009

A068512 Numerators of arithmetic derivative of n/2: A003415(n)/2 - n/4; denominators: A010685.

Original entry on oeis.org

-1, 0, -1, 1, -3, 1, -5, 4, 3, 1, -9, 5, -11, 1, 1, 12, -15, 6, -17, 7, -1, 1, -21, 16, -5, 1, 27, 9, -27, 8, -29, 32, -5, 1, -11, 21, -35, 1, -7, 24, -39, 10, -41, 13, 33, 1, -45, 44, -21, 10, -11, 15, -51, 27, -23, 32, -13, 1, -57, 31, -59
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 19 2002

Keywords

Comments

For all k>0: a(2*k)=A003415(k) with denominator=A010685(2*k)=1;
for primes p>2: a(2*p)=1 with denominator=A010685(2*p)=1,
and a(p)=2-p with denominator=A010685(p)=4.

Crossrefs

For definition of arithmetic derivative: A003415.

A000302 Powers of 4: a(n) = 4^n.

Original entry on oeis.org

1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 4), L(1, 4), P(1, 4), T(1, 4). Essentially same as Pisot sequences E(4, 16), L(4, 16), P(4, 16), T(4, 16). See A008776 for definitions of Pisot sequences.
The convolution square root of this sequence is A000984, the central binomial coefficients: C(2n,n). - T. D. Noe, Jun 11 2002
With P(n) being the number of integer partitions of n, p(i) as the number of parts of the i-th partition of n, d(i) as the number of different parts of the i-th partition of n, m(i, j) the multiplicity of the j-th part of the i-th partition of n, one has a(n) = Sum_{i = 1..P(n)} p(i)!/(Product_{j = 1..d(i)} m(i, j)!) * 2^(n-1). - Thomas Wieder, May 18 2005
Sums of rows of the triangle in A122366. - Reinhard Zumkeller, Aug 30 2006
Hankel transform of A076035. - Philippe Deléham, Feb 28 2009
Equals the Catalan sequence: (1, 1, 2, 5, 14, ...), convolved with A032443: (1, 3, 11, 42, ...). - Gary W. Adamson, May 15 2009
Sum of coefficients of expansion of (1 + x + x^2 + x^3)^n.
a(n) is number of compositions of natural numbers into n parts less than 4. For example, a(2) = 16 since there are 16 compositions of natural numbers into 2 parts less than 4.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 4-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Squares in A002984. - Reinhard Zumkeller, Dec 28 2011
Row sums of Pascal's triangle using the rule that going left increases the value by a factor of k = 3. For example, the first three rows are {1}, {3, 1}, and {9, 6, 1}. Using this rule gives row sums as (k+1)^n. - Jon Perry, Oct 11 2012
First differences of A002450. - Omar E. Pol, Feb 20 2013
Sum of all peak heights in Dyck paths of semilength n+1. - David Scambler, Apr 22 2013
Powers of 4 exceed powers of 2 by A020522 which is the m-th oblong number A002378(m), m being the n-th Mersenne number A000225(n); hence, we may write, a(n) = A000079(n) + A002378(A000225(n)). - Lekraj Beedassy, Jan 17 2014
a(n) is equal to 1 plus the sum for 0 < k < 2^n of the numerators and denominators of the reduced fractions k/2^n. - J. M. Bergot, Jul 13 2015
Binomial transform of A000244. - Tony Foster III, Oct 01 2016
From Ilya Gutkovskiy, Oct 01 2016: (Start)
Number of nodes at level n regular 4-ary tree.
Partial sums of A002001. (End)
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
Also the number of connected dominating sets in the (n+1)-barbell graph. - Eric W. Weisstein, Jun 29 2017
Side length of the cells at level n in a pyramid scheme where a square grid is decomposed into overlapping 2 X 2 blocks (cf. Kropatsch, 1985). - Felix Fröhlich, Jul 04 2019
a(n-1) is the number of 3-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020

References

  • H. W. Gould, Combinatorial Identities, 1972, eq. (1.93), p. 12.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, eq. (5.39), p. 187.
  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A024036, A052539, A032443, A000351 (Binomial transform).
Cf. A249307.
Cf. A083420.

Programs

Formula

a(n) = 4^n.
a(0) = 1; a(n) = 4*a(n-1).
G.f.: 1/(1-4*x).
E.g.f.: exp(4*x).
a(n) = Sum_{k = 0..n} binomial(2k, k) * binomial(2(n - k), n - k). - Benoit Cloitre, Jan 26 2003 [See Graham et al., eq. (5.39), p. 187. - Wolfdieter Lang, Aug 16 2019]
1 = Sum_{n >= 1} 3/a(n) = 3/4 + 3/16 + 3/64 + 3/256 + 3/1024, ...; with partial sums: 3/4, 15/16, 63/64, 255/256, 1023/1024, ... - Gary W. Adamson, Jun 16 2003
a(n) = A001045(2*n) + A001045(2*n+1). - Paul Barry, Apr 27 2004
A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007
a(n) = Sum_{j = 0..n} 2^(n - j)*binomial(n + j, j). - Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
Hankel transform of A115967. - Philippe Deléham, Jun 22 2007
a(n) = 6*Stirling2(n+1, 4) + 6*Stirling2(n+1, 3) + 3*Stirling2(n+1, 2) + 1 = 2*Stirling2(2^n, 2^n - 1) + Stirling2(n+1, 2) + 1. - Ross La Haye, Jun 26 2008
a(n) = A159991(n)/A001024(n) = A047653(n) + A181765(n). A160700(a(n)) = A010685(n). - Reinhard Zumkeller, May 02 2009
a(n) = A188915(A006127(n)). - Reinhard Zumkeller, Apr 14 2011
a(n) = Sum_{k = 0..n} binomial(2*n+1, k). - Mircea Merca, Jun 25 2011
Sum_{n >= 1} Mobius(n)/a(n) = 0.1710822479183... - R. J. Mathar, Aug 12 2012
a(n) = Sum_{k = 0..n} binomial(2*k + x, k)*binomial(2*(n - k) - x, n - k) for every real number x. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
a(n) = 5*a(n - 1) - 4*a(n - 2). - Jean-Bernard François, Sep 12 2013
a(n) = (2*n+1) * binomial(2*n,n) * Sum_{j=0..n} (-1)^j/(2*j+1)*binomial(n,j). - Vaclav Kotesovec, Sep 15 2013
a(n) = A000217(2^n - 1) + A000217(2^n). - J. M. Bergot, Dec 28 2014
a(n) = (2^n)^2 = A000079(n)^2. - Doug Bell, Jun 23 2015
a(n) = A002063(n)/3 - A004171(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = (1/2) * Product_{k = 0..n} (1 + (2*n + 1)/(2*k + 1)). - Peter Bala, Mar 06 2018
a(n) = A001045(n+1)*A001045(n+2) + A001045(n)^2. - Ezhilarasu Velayutham, Aug 30 2019
a(n) = 1 + 3*Sum_{k=0..n} binomial(2*n, n+k)*(k|9), where (k|9) is the Jacobi symbol. - Greg Dresden, Oct 11 2022
a(n) = Sum_{k = 0..n} binomial(2*n+1, 2*k) = Sum_{k = 0..n} binomial(2*n+1, 2*k+1). - Sela Fried, Mar 23 2023

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A047208 Numbers that are congruent to {0, 4} mod 5.

Original entry on oeis.org

0, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 114, 115, 119, 120, 124, 125, 129, 130, 134, 135, 139, 140, 144, 145, 149
Offset: 1

Views

Author

Keywords

Comments

Also solutions to 3^x + 5^x == 2 (mod 11). - Cino Hilliard, May 18 2003

Crossrefs

Cf. A001622, A010674, A010685 (first differences), A274406.

Programs

  • Magma
    [(5*(n-1) + 3*((n-1) mod 2))/2: n in [1..100]]; // G. C. Greubel, Nov 23 2021
    
  • Mathematica
    {#,#+4}&/@(5*Range[0,30])//Flatten (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    forstep(n=0,200,[4,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • Sage
    [(5*(n-1) +3*((n-1)%2))/2 for n in (1..100)] # G. C. Greubel, Nov 23 2021

Formula

From R. J. Mathar, Jan 24 2009: (Start)
G.f.: x^2*(4+x)/((1-x)^2*(1+x)).
a(n) = a(n-2) + 5. (End)
a(n) = 5*n - 6 - a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k), with b(0)=4 and b(k) = A020714(k-1) = 5*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((5/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = (5*(n-1) + 3*(n-1 mod 2))/2 = (5*(n-1) + A010674(n-1))/2. - G. C. Greubel, Nov 23 2021
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + log(phi)/(2*sqrt(5)) - sqrt(1+2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 1 + ((5*x - 7/2)*exp(x) + (3/2)*exp(-x))/2. - David Lovler, Aug 23 2022

A174968 Decimal expansion of (1 + sqrt(2))/2.

Original entry on oeis.org

1, 2, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 02 2010

Keywords

Comments

a(n) is the diameter of the circle around the Vitruvian Man when the square has sides of unit length. See illustration in links. - Kival Ngaokrajang, Jan 29 2015
The iterated function z^2 - 1/4, starting from z = 0, gives a pretty good rational approximation of (-1)((1 + sqrt(2))/2 - 1) to more than eight decimal digits after just twenty steps. - Alonso del Arte, Apr 09 2016
This sequence describes the minimum Euclidean length of the optimal solution of the well-known Nine dots puzzle, published in Sam Loyd’s Cyclopedia of puzzles (1914), p. 301 since a valid polygonal chain satisfying the conditions of the above-mentioned problem is (0, 1)-(0, 3)-(3, 0)-(0, 0)-(2, 2), and its total length is equal to 5*(1 + sqrt(2)) = 12.071... (i.e., 10*(1 + sqrt(2))/2). - Marco Ripà, Jul 22 2024

Examples

			1.20710678118654752440084436210484903928483593768847...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A010685 (continued fraction expansion of (1 + sqrt(2))/2), A079291, A249403.
Apart from initial digits the same as A157214 and A010503.

Programs

Formula

Equals Product_{k>=2} (1 + (-1)^k/A079291(k)). - Amiram Eldar, Dec 03 2024

A160700 a(n) = if n<16 then n else a(floor(n/16)) XOR (n mod 16).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13, 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11, 5, 4, 7, 6, 1, 0, 3, 2, 13
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 01 2009

Keywords

Comments

A very simple hash function for the nonnegative integers.
a(A000079(n))=A133145(n); a(A000302(n))=A010685(n); a(A001025(n))=A161452(n); a(A161440(n))=0; a(A161441(n))=1; a(A161442(n))=2; a(A161443(n))=3; a(A161444(n))=4; a(A161445(n))=5; a(A161446(n))=6; a(A161447(n))=7; a(A161448(n))=8; a(A161449(n))=9; a(A161450(n))=10; a(A161451(n))=11; a(A161452(n))=12; a(A161453(n))=13; a(A161454(n))=14; a(A161455(n))=15. - Reinhard Zumkeller, Jun 10 2009

Programs

  • Haskell
    import Data.Bits (xor)
    a160700 n = a160700_list !! n
    a160700_list = [0..15] ++ map f [16..] where
       f x = a160700 x' `xor` m :: Int where (x', m) = divMod x 16
    -- Reinhard Zumkeller, Nov 07 2012
    
  • Maple
    read("transforms") ;
    A160700 := proc(n)
        if n < 16 then
            n;
        else
            XORnos(procname(floor(n/16)),modp(n,16))
        end if;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    a[n_] := a[n] = If[n < 16, n, a[Floor[n/16]] ~BitXor~ Mod[n, 16]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 25 2018 *)
  • Maxima
    load(functs)$
    A160700(n):=if n<16 then n else logxor(floor(n/16),mod(n,16))$
    makelist(A160700(n),n,0,60); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=my(t=n%16); while(n>15, n>>=4; t=bitxor(t, n%16)); t \\ Charles R Greathouse IV, Jan 25 2018

A134931 a(n) = (5*3^n-3)/2.

Original entry on oeis.org

1, 6, 21, 66, 201, 606, 1821, 5466, 16401, 49206, 147621, 442866, 1328601, 3985806, 11957421, 35872266, 107616801, 322850406, 968551221, 2905653666, 8716961001, 26150883006, 78452649021, 235357947066, 706073841201, 2118221523606
Offset: 0

Views

Author

Rolf Pleisch, Jan 29 2008

Keywords

Comments

Numbers n where the recurrence s(0)=1, if s(n-1) >= n then s(n) = s(n-1) - n else s(n) = s(n-1) + n produces s(n)=0. - Hugo Pfoertner, Jan 05 2012
A046901(a(n)) = 1. - Reinhard Zumkeller, Jan 31 2013
Binomial transform of A146523: (1, 5, 10, 20, 40, ...) and double binomial transform of A010685: (1, 4, 1, 4, 1, 4, ...). - Gary W. Adamson, Aug 25 2016
Also the number of maximal cliques in the (n+1)-Hanoi graph. - Eric W. Weisstein, Dec 01 2017
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+1). Because Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1) - 1/((a(n)+1+5*3^n)*5*3^(n-1)) < Sum_{k=1..5*3^(n-1)} 1/(a(n-1)+k+1) < Sum_{k=1..5*3^(n-1)} 1/(a(n)+3*k-1) + 1/(a(n)+3*k) + 1/(a(n)+3*k+1), we have 1 < 1/3 + 1/4 + ... + 1/7 < 1/8 + 1/9 + ... + 1/22 < ... . - Jinyuan Wang, Jun 15 2020

Crossrefs

Programs

Formula

a(n) = 3*(a(n-1) + 1), with a(0)=1.
From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (5/2)/(1-3*x) - (3/2)/(1-x).
a(n) = (A005030(n) - 3)/2. (End)
a(n) = A060816(n+1) - 1. - Philippe Deléham, Apr 14 2013
E.g.f.: exp(x)*(5*exp(2*x) - 3)/2. - Stefano Spezia, Aug 28 2023

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 25 2008

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A303325 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 8, 1, 8, 1, 8, 4, 2, 16, 1, 32, 1, 8, 1, 32, 1, 32, 4, 2, 16, 2, 64, 1, 128, 1, 12, 4, 32, 1, 128, 1, 128, 4, 10, 64, 3, 64, 2, 256, 1, 512, 1, 46, 25, 62, 3, 128, 1, 512, 1, 512, 4, 50, 368, 56, 204, 10, 256, 2, 1024, 1, 2048, 1, 204, 201, 758, 136, 744, 9, 512, 1
Offset: 1

Views

Author

R. H. Hardin, Apr 21 2018

Keywords

Comments

Table starts
...1.1...1..1...1....1.....1.....1.......1........1.........1..........1
...2.2...8..8..32...32...128...128.....512......512......2048.......2048
...4.1...4..1...4....1.....4.....1.......4........1.........4..........1
...8.2...8..2..12...10....46....50.....204......290......1034.......1682
..16.1..16..4..64...25...368...201....2545.....1855.....21082......17922
..32.2..32..3..62...56...758...822...11950....15100....206189.....274746
..64.1..64..3.204..136..2956..3929...69328...130531...2005898....4227664
.128.2.128.10.744..531.15494.24759..629227..1489177..33766564...89782726
.256.1.256..9.900.1035.44101.97205.3531980.11297739.359263250.1265799068

Examples

			All solutions for n=5 k=4
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..1
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..1
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 3 is A000079(n-1) for n>2.
Row 2 is A158302(n+1).
Row 3 is A010685(n+8).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = a(n-2)
k=3: a(n) = 2*a(n-1) for n>3
k=4: [order 55] for n>57
k=5: [order 33] for n>35
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 4*a(n-2)
n=3: a(n) = a(n-2)
n=4: [order 18] for n>19
n=5: [order 34] for n>35
Showing 1-10 of 26 results. Next