cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A195033 Multiples of 21 and of 20 interleaved: a(2n-1) = 21n, a(2n) = 20n.

Original entry on oeis.org

21, 20, 42, 40, 63, 60, 84, 80, 105, 100, 126, 120, 147, 140, 168, 160, 189, 180, 210, 200, 231, 220, 252, 240, 273, 260, 294, 280, 315, 300, 336, 320, 357, 340, 378, 360, 399, 380, 420, 400, 441, 420, 462, 440, 483, 460, 504, 480, 525, 500, 546, 520, 567, 540
Offset: 1

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

First differences of A195034.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [21, 20, 29]. Zero together with partial sums give A195034, the vertices of the spiral.

Crossrefs

Programs

Formula

From Bruno Berselli, Sep 29 2011: (Start)
G.f.: x*(21+20*x)/((1-x)^2*(1+x)^2).
a(n) = A010693(n)*A010718(n)*A029578(n+1) = (41*n-(n+21)*(-1)^n+21)/4.
a(n) = 2*a(n-2) - a(n-4). (End)

Extensions

More terms from Bruno Berselli, Sep 29 2011

A021136 Decimal expansion of 1/132.

Original entry on oeis.org

0, 0, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5, 7
Offset: 0

Views

Author

Keywords

Comments

Multiplied by -1, this is zeta(-9), where zeta is the Riemann zeta function. - Alonso del Arte, Jan 13 2012

Crossrefs

Cf. A010718.

Programs

  • Mathematica
    RealDigits[1/132, 10, 100][[1]] (* Alonso del Arte, Jan 13 2012 *)

A176321 Decimal expansion of (35 + sqrt(1365))/14.

Original entry on oeis.org

5, 1, 3, 8, 9, 9, 3, 3, 1, 4, 5, 5, 8, 7, 3, 7, 9, 9, 9, 4, 0, 2, 5, 4, 3, 6, 8, 5, 6, 9, 9, 7, 9, 5, 8, 6, 1, 1, 7, 9, 7, 1, 2, 4, 4, 4, 5, 1, 2, 2, 5, 4, 1, 9, 6, 1, 7, 0, 7, 6, 0, 1, 3, 4, 8, 9, 2, 3, 3, 2, 9, 0, 4, 8, 0, 3, 6, 8, 5, 3, 3, 5, 8, 6, 3, 5, 9, 3, 1, 4, 7, 1, 8, 1, 7, 6, 0, 9, 2, 1, 7, 0, 0, 8, 9
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (35+sqrt(1365))/14 is A010718.

Examples

			5.13899331455873799940...
		

Crossrefs

Cf. A176322 (decimal expansion of sqrt(1365)), A010718 (repeat 5, 7).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); (35+Sqrt(1365))/14; // G. C. Greubel, Nov 26 2019
    
  • Maple
    evalf( (35+sqrt(1365))/14, 120); # G. C. Greubel, Nov 26 2019
  • Mathematica
    RealDigits[(35 + Sqrt[1365])/14, 10, 100][[1]] (* Vincenzo Librandi, Sep 24 2013 *)
  • PARI
    default(realprecision, 120); (35+sqrt(1365))/14 \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    numerical_approx((35+sqrt(1365))/14, digits=120) # G. C. Greubel, Nov 26 2019

A260307 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) with a(0) - a(8) as shown below.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 13, 10, 15, 12, 17, 14, 20, 15, 22, 17, 24, 19, 27, 20, 29, 22, 31, 24, 34, 25, 36, 27, 38, 29, 41, 30, 43, 32, 45, 34, 48, 35, 50, 37, 52, 39, 55, 40, 57, 42, 59, 44, 62, 45, 64, 47, 66, 49, 69, 50, 71, 52, 73, 54, 76, 55, 78
Offset: 0

Views

Author

Paul Curtz, Nov 22 2015

Keywords

Comments

A260708 difference table rows have the same nine-step recurrence:
0, 1, 3, 6, 10, 16, 21, 29, 36, 46, 55, 65, 78, 93, ...
1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 13, 10, 15, 12, ... = a(n)
1, 1, 1, 2, -1, 3, -1, 3, -1, 4, -3, 5, -3, 5, ... = b(n)
0, 0, 1, -3, 4, -4, 4, -4, 5, -7, 8, -8, 8, -8, ... (see A042965(n)).
(b(2n) + b(2n+1) = A052901(n+2).)

Crossrefs

Cf. A004767, A010718, A042965, A047212, A047282, A052901, A152467, A260160 (eight-step recurrence), A260699 (nine-step recurrence), A260708.

Programs

  • Magma
    I:=[1,2,3,4,6,5,8,7];[n le 8 select I[n] else Self(n-2) + Self(n-6) - Self(n-8): n in [1..70]]; // Vincenzo Librandi, Dec 26 2015
  • Mathematica
    RecurrenceTable[{a[n] == a[n-2] + a[n-6] - a[n-8], a[0]=1, a[1]=2, a[2]=3, a[3]=4, a[4]=6, a[5]=5, a[6]=8, a[7]=7}, a, {n,0,100}] (* G. C. Greubel, Nov 23 2015 *)
  • PARI
    Vec((x^6+x^5+3*x^4+2*x^3+2*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 22 2015
    
  • PARI
    vector(100, n, n--; n + (-1)^n *((n+2)\6) + 1) \\ Altug Alkan, Nov 24 2015
    

Formula

a(2n) = A047282(n). a(2n+1) = A047212(n+1).
a(n) = A260708(n+1) - A260708(n).
a(n+6) = a(n) + period of length 2: repeat 7, 5.
a(2n) + a(2n+1) = 3 + 4*n.
a(n) = n + 1 + (-1)^n*A152467(n+2).
From Colin Barker, Nov 22 2015: (Start)
a(n) = a(n-2) + a(n-6) - a(n-8) for n>7.
G.f.: (x^6+x^5+3*x^4+2*x^3+2*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+x+1)).
(End)

A175828 a(n) = (n*(6*n+1)+(n+2)*(-1)^n)/2.

Original entry on oeis.org

1, 2, 15, 26, 53, 74, 115, 146, 201, 242, 311, 362, 445, 506, 603, 674, 785, 866, 991, 1082, 1221, 1322, 1475, 1586, 1753, 1874, 2055, 2186, 2381, 2522, 2731, 2882, 3105, 3266, 3503, 3674, 3925, 4106, 4371, 4562, 4841, 5042, 5335, 5546, 5853, 6074
Offset: 0

Views

Author

Bruno Berselli, Sep 21 2010 - Sep 25 2010

Keywords

Comments

a(n) == A068073(n) (mod 4).
a(h) == 0 (mod 11) for h = 11*(k-floor((k-1)/3))-2*(-1)^(k+floor(k/3)) (cf. A175833).

Crossrefs

Programs

  • Magma
    [(n*(6*n+1)+(n+2)*(-1)^n)/2: n in [0..50]];
    
  • Magma
    I:=[1,2,15,26,53]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
  • Mathematica
    Table[(n (6 n + 1) + (n + 2) (-1)^n)/2, {n, 0, 50}]
    CoefficientList[Series[(1 + x + 11 x^2 + 9 x^3 + 2 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,2,15,26,53},70] (* Harvey P. Dale, Jul 03 2019 *)

Formula

G.f.: (1+x+11*x^2+9*x^3+2*x^4)/((1+x)^2*(1-x)^3).
a(n)-a(n-1)-2*a(n-2)+2*a(n-3)+a(n-4)-a(n-5) = 0 for n>4.
a(n)-a(n-2)-(a(n-1)-a(n-3)) = 2*A010718(n-1) for n>2.
a(n)-a(n-2)+(a(n-1)-a(n-3)) = A142241(n-2) for n>2.

A176437 Decimal expansion of (35+sqrt(1365))/10.

Original entry on oeis.org

7, 1, 9, 4, 5, 9, 0, 6, 4, 0, 3, 8, 2, 2, 3, 3, 1, 9, 9, 1, 6, 3, 5, 6, 1, 1, 5, 9, 9, 7, 9, 7, 1, 4, 2, 0, 5, 6, 5, 1, 5, 9, 7, 4, 2, 2, 3, 1, 7, 1, 5, 5, 8, 7, 4, 6, 3, 9, 0, 6, 4, 1, 8, 8, 8, 4, 9, 2, 6, 6, 0, 6, 6, 7, 2, 5, 1, 5, 9, 4, 7, 0, 2, 0, 9, 0, 3, 0, 4, 0, 6, 0, 5, 4, 4, 6, 5, 2, 9, 0, 3, 8, 1, 2, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of (35+sqrt(1365))/10 is A010718 preceded by 7.

Examples

			(35+sqrt(1365))/10 = 7.19459064038223319916...
		

Crossrefs

Cf. A176322 (decimal expansion of sqrt(1365)), A010718 (repeat 5, 7).

Programs

  • Mathematica
    RealDigits[(35+Sqrt[1365])/10,10,120][[1]] (* Harvey P. Dale, Dec 18 2012 *)

A225539 Numbers n where 2^n and n have the same digital root.

Original entry on oeis.org

5, 16, 23, 34, 41, 52, 59, 70, 77, 88, 95, 106, 113, 124, 131, 142, 149, 160, 167, 178, 185, 196, 203, 214, 221, 232, 239, 250, 257, 268, 275, 286, 293, 304, 311, 322, 329, 340, 347, 358, 365, 376, 383, 394, 401, 412, 419, 430, 437, 448
Offset: 1

Views

Author

Marcus Hedbring, May 17 2013

Keywords

Comments

The digital roots of n have a cycle length of 9 (A010888) and the digital roots of 2^n have a cycle length of 6 (A153130). Therefore, if n is a term so is n+18.
The only values of the digital roots of a(n) are 5 and 7 (A010718).

Examples

			For n=23, the digital root of n is 5. 2^n equals 8388608 so the digital root of 2^n is 5 as well.
		

Crossrefs

Programs

  • Mathematica
    digitalRoot[n_] :=  Module[{r = n}, While[r > 9, r = Total[IntegerDigits[ r]]]; r]; Select[Range[448], digitalRoot[2^#] == digitalRoot[#] &] (* T. D. Noe, May 19 2013 *)
    LinearRecurrence[{1,1,-1},{5,16,23},60] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    forstep(n=16,500,[7,11],print1(n", ")) \\ Charles R Greathouse IV, May 19 2013

Formula

a(n) = 9*n - 3 + (-1)^n.
a(n) = a(n-1) + 7 (odd n), a(n) = a(n-1) + 11 (even n) with a(1) = 5.
G.f. x*(5 + 11*x + 2*x^2) / ((1-x)^2 * (1+x)). - Joerg Arndt, May 17 2013
Showing 1-7 of 7 results.