cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A176324 Decimal expansion of (15+7*sqrt(5))/6.

Original entry on oeis.org

5, 1, 0, 8, 7, 4, 5, 9, 7, 3, 7, 4, 9, 7, 5, 4, 6, 4, 5, 8, 1, 0, 7, 0, 2, 6, 1, 3, 5, 1, 9, 8, 2, 2, 2, 7, 4, 6, 8, 0, 7, 2, 1, 4, 1, 9, 5, 4, 6, 7, 8, 0, 0, 1, 1, 6, 4, 9, 3, 8, 0, 1, 1, 9, 6, 4, 5, 6, 0, 7, 7, 4, 6, 5, 7, 7, 4, 3, 9, 0, 4, 9, 3, 1, 6, 8, 1, 6, 8, 0, 9, 7, 7, 5, 2, 4, 5, 9, 8, 7, 4, 6, 4, 4, 2
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (15+7*sqrt(5))/6 is A010720.
Volume of a triangular hebesphenorotunda (Johnson solid J_92) with unit edges. - Paolo Xausa, Aug 02 2025

Examples

			5.10874597374975464581...
		

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A010720 (repeat 5, 9).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (15+7*Sqrt(5))/6; // G. C. Greubel, Dec 05 2019
    
  • Maple
    evalf( (15+7*sqrt(5))/6, 100); # G. C. Greubel, Dec 05 2019
  • Mathematica
    RealDigits[(15+7Sqrt[5])/6,10,120][[1]]  (* Harvey P. Dale, Apr 18 2011 *)
  • PARI
    default(realprecision, 100); (15+7*sqrt(5))/6 \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    numerical_approx((15+7*sqrt(5))/6, digits=100) # G. C. Greubel, Dec 05 2019

A306285 Numbers congruent to 4 or 21 mod 26.

Original entry on oeis.org

4, 21, 30, 47, 56, 73, 82, 99, 108, 125, 134, 151, 160, 177, 186, 203, 212, 229, 238, 255, 264, 281, 290, 307, 316, 333, 342, 359, 368, 385, 394, 411, 420, 437, 446, 463, 472, 489, 498, 515, 524, 541, 550, 567, 576, 593, 602, 619, 628, 645, 654, 671, 680, 697, 706, 723, 732, 749, 758, 775, 784, 801, 810, 827, 836, 853, 862
Offset: 1

Views

Author

Davis Smith, Feb 03 2019

Keywords

Comments

A007310(a(n)+1) is always a multiple of 13.
a(n) mod 6 follows the following pattern: 4,3,0,5,2,1,4,3,0,5,2,1 and so on.
a(n) mod 4 = A010873(n).
A020639(A007310(a(n)+1)) = 5 when n is congruent to 2 or 9 (mod 10) (n is a term in A273669). It equals 7 when n is congruent to 3 or 12 (mod 14) but not congruent to 2 or 9 (mod 10). It equals 11 when n is congruent to 4 or 19 (mod 22) but not congruent to 2 or 9 (mod 10) and not congruent to 3 or 12 (mod 14). Otherwise, it is 13.

Crossrefs

Programs

  • Maple
    seq(seq(26*i+j, j=[4, 21]), i=0..200);
  • Mathematica
    Select[Range[200], MemberQ[{4, 21}, Mod[#, 26]] &]
  • PARI
    for(n=1, 1000, if((n%26==4) || (n%26==21), print1(n, ", ")))
    
  • PARI
    Vec(x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 08 2019

Formula

a(n) = 13*n - A010720(n+1).
From Colin Barker, Feb 08 2019: (Start)
G.f.: x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)).
a(n) = 13*n - 5 for n even.
a(n) = 13*n - 9 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
E.g.f.: 5 + (13*x - 7)*exp(x) + 2*exp(-x). - David Lovler, Sep 09 2022

A121511 a(n) = a(n-1) + a(n-4) - a(n-5).

Original entry on oeis.org

1, 5, 13, 25, 5, 9, 17, 29, 9, 13, 21, 33, 13, 17, 25, 37, 17, 21, 29, 41, 21, 25, 33, 45, 25, 29, 37, 49, 29, 33, 41, 53, 33, 37, 45, 57, 37, 41, 49, 61, 41, 45, 53, 65, 45, 49, 57, 69, 49, 53, 61, 73, 53, 57, 65, 77, 57, 61, 69, 81, 61, 65, 73, 85, 65, 69, 77
Offset: 1

Views

Author

Roger L. Bagula, Sep 07 2006

Keywords

Comments

This sequence gives a linearly increasing triangle shaped form on plotting.

Crossrefs

Cf. A001844.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,5,13,25,5},67] (* James C. McMahon, Oct 19 2024 *)
  • PARI
    Vec(-x*(-1-4*x-8*x^2-12*x^3+21*x^4)/((1+x)*(x^2+1)*(x-1)^2) + O(x^75)) \\ Jinyuan Wang, Jun 07 2020

Formula

G.f.: -x*(-1-4*x-8*x^2-12*x^3+21*x^4)/((1+x)*(x^2+1)*(x-1)^2).
a(n) = n + 17/2 + 7*(-1)^n/2 + A057077(n+1)*A010720(n-1).

Extensions

Definition replaced by recurrence - The Assoc. Editors of the OEIS, Oct 14 2009
More terms from Jinyuan Wang, Jun 07 2020

A176518 Decimal expansion of 3*(15+7*sqrt(5))/10.

Original entry on oeis.org

9, 1, 9, 5, 7, 4, 2, 7, 5, 2, 7, 4, 9, 5, 5, 8, 3, 6, 2, 4, 5, 9, 2, 6, 4, 7, 0, 4, 3, 3, 5, 6, 8, 0, 0, 9, 4, 4, 2, 5, 2, 9, 8, 5, 5, 5, 1, 8, 4, 2, 0, 4, 0, 2, 0, 9, 6, 8, 8, 8, 4, 2, 1, 5, 3, 6, 2, 0, 9, 3, 9, 4, 3, 8, 3, 9, 3, 9, 0, 2, 8, 8, 7, 7, 0, 2, 7, 0, 2, 5, 7, 5, 9, 5, 4, 4, 2, 7, 7, 7, 4, 3, 5, 9, 6
Offset: 1

Views

Author

Klaus Brockhaus, Apr 23 2010

Keywords

Comments

Continued fraction expansion of (45+21*sqrt(5))/10 is A010720 preceded by 9.
Quadratic number with denominator 5 and minimal polynomial 5x^2 - 45x - 9. - Charles R Greathouse IV, Apr 25 2016

Examples

			(45+21*sqrt(5))/10 = 9.19574275274955836245...
		

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A010720(repeat 5, 9).

Programs

Showing 1-4 of 4 results.