A010766 Triangle read by rows: row n gives the numbers floor(n/k), k = 1..n.
1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 5, 2, 1, 1, 1, 6, 3, 2, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 13, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle starts: 1: 1; 2: 2, 1; 3: 3, 1, 1; 4: 4, 2, 1, 1; 5: 5, 2, 1, 1, 1; 6: 6, 3, 2, 1, 1, 1; 7: 7, 3, 2, 1, 1, 1, 1; 8: 8, 4, 2, 2, 1, 1, 1, 1; 9: 9, 4, 3, 2, 1, 1, 1, 1, 1; 10: 10, 5, 3, 2, 2, 1, 1, 1, 1, 1; 11: 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1; 12: 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1; 13: 13, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1; 14: 14, 7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1; 15: 15, 7, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1; 16: 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1; 17: 17, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1; 18: 18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1; 19: 19, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 20: 20, 10, 6, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; ...
References
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
Links
- T. D. Noe, Rows n = 1..50 of triangle, flattened
Crossrefs
Another version of A003988.
Finite differences of rows: A075993.
Columns of this triangle:
T(n,1) = n,
T(n,2) = A008619(n-2) for n>1,
T(n,3) = A008620(n-3) for n>2,
T(n,4) = A008621(n-4) for n>3,
T(n,5) = A002266(n) for n>4,
T(n,n) = A000012(n) = 1.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033322(k),
T(3,k) = A278105(k),
T(4,k) = A033324(k),
T(5,k) = A033325(k),
T(6,k) = A033326(k),
T(7,k) = A033327(k),
T(8,k) = A033328(k),
T(9,k) = A033329(k),
T(10,k) = A033330(k),
...
T(99,k) = A033419(k),
T(100,k) = A033420(k),
T(1000,k) = A033421(k),
T(10^4,k) = A033422(k),
T(10^5,k) = A033427(k),
T(10^6,k) = A033426(k),
T(10^7,k) = A033425(k),
T(10^8,k) = A033424(k),
T(10^9,k) = A033423(k).
Programs
-
Haskell
a010766 = div a010766_row n = a010766_tabl !! (n-1) a010766_tabl = zipWith (map . div) [1..] a002260_tabl -- Reinhard Zumkeller, Apr 29 2015, Aug 13 2013, Apr 13 2012
-
Maple
seq(seq(floor(n/k),k=1..n),n=1..20); # Robert Israel, Sep 01 2014
-
Mathematica
Flatten[Table[Floor[n/k],{n,20},{k,n}]] (* Harvey P. Dale, Nov 03 2012 *)
-
PARI
a(n)=t=floor((-1+sqrt(1+8*(n-1)))/2);(t+1)\(n-t*(t+1)/2) \\ Edward Jiang, Sep 10 2014
-
PARI
T(n, k) = sum(i=1, n, (i % k) == 0); \\ Michel Marcus, Apr 08 2017
Formula
G.f.: 1/(1-x)*Sum_{k>=1} x^k/(1-y*x^k). - Vladeta Jovovic, Feb 05 2004
Triangle A010766 = A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Oct 30 2007
Let T(n,0) = n+1, then T(n,k) = (sum of the k preceding elements in the previous column) minus (sum of the k preceding elements in same column). - Mats Granvik, Gary W. Adamson, Feb 20 2010
T(n,k) = (n - A048158(n,k)) / k. - Reinhard Zumkeller, Aug 13 2013
T(n,k) = 1 + T(n-k,k) (where T(n-k,k) = 0 if n < 2*k). - Robert Israel, Sep 01 2014
T(n,k) = T(floor(n/k),1) if k>1; T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i). If we modify the formula to T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i)/i^s, where s is a complex variable, then the first column becomes the partial sums of the Riemann zeta function. - Mats Granvik, Apr 27 2016
Extensions
Cross references edited by Jason Kimberley, Nov 23 2016
Comments