A010844 a(n) = 2*n*a(n-1) + 1 with a(0) = 1.
1, 3, 13, 79, 633, 6331, 75973, 1063623, 17017969, 306323443, 6126468861, 134782314943, 3234775558633, 84104164524459, 2354916606684853, 70647498200545591, 2260719942417458913, 76864478042193603043, 2767121209518969709549, 105150605961720848962863
Offset: 0
Examples
a(3) = 2*3*a(2) + 1 = 6*13 + 1 = 79. G.f. = 1 + 3*x + 13*x^2 + 79*x^3 + 633*x^4 + 6331*x^5 + 75973*x^6 + 1063623*x^7 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Paul Barry, Eulerian-Dowling Polynomials as Moments, Using Riordan Arrays, arXiv:1702.04007 [math.CO], 2017.
- Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding Squares and Overlaps Over the Natural Numbers, Discrete Math., 309 (2009), 6245-6254. [From _N. J. A. Sloane_, Nov 27 2009]
- Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding Squares and Overlaps Over the Natural Numbers, arXiv:0901.1397 [math.CO], 2009.
- Guo-Niu Han, Enumeration of Standard Puzzles [Wayback Machine link added by _Felix Fröhlich_, Mar 26 2018]
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
Programs
-
Maple
G:=(x,a,k,n)-> n!*a^n*x + k*sum(n!*a^(n-j)/j!,j=1..n); seq(G(1,2,1,n), n = 0..20) # Gary Detlefs, Mar 26 2018 a := n -> 2^n*add((n!/k!)*(1/2)^k, k=0..n): seq(a(n), n=0..19); # Peter Luschny, Jan 06 2020 seq(simplify(2^n*KummerU(-n, -n, 1/2)), n = 0..19); # Peter Luschny, May 10 2022
-
Mathematica
Table[ Gamma[ n, 1/2 ]*Exp[ 1/2 ]*2^(n-1), {n, 1, 24} ] and/or... s=1;lst={};Do[s+=s++n;AppendTo[lst, s], {n, 1, 5!, 2}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 23 2008 *) a[ n_] := If[ n<0, 0, Floor[ n! E^(1/2) 2^n ]] (* Michael Somos, Sep 04 2013 *) nxt[{n_,a_}]:={n+1,2*a(n+1)+1}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Jan 06 2022 *) a[n_] := n! 2^n Hypergeometric1F1[-n, -n, 1/2]; Table[a[n], {n, 0, 19}] (* Peter Luschny, Jul 28 2024 *)
-
PARI
{a(n) = if( n<0, 0, n! * sum(k=0, n, 2^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */
Formula
a(n) = floor(n! * e^(1/2) * 2^n) = n! * Sum_{k=0..n} 2^(n-k) / k! (i.e. binomial transform of (2n)!! = n!*2^n) = n! * (e^(1/2) * 2^n - Sum_{k >= n+1} 2^(n-k) / k!). - Michael Somos, Mar 26 1999
E.g.f.: exp(x)/(1 - 2*x). - Vladeta Jovovic, Aug 11 2002
Sum_{n >= 1} 1/a(n) = 0.4246665348160769533082551230... - Cino Hilliard, Aug 19 2003
a(n) = Sum_{k=0..n} P(n, k)*2^k, where P(n,k) = n!/(n-k)!. - Ross La Haye, Aug 29 2005
G.f.: 1/(1 - x - 2*x/(1 - 2*x/(1 - x - 4*x/(1 - 4*x/(1 - x - 6*x/(1 - 6*x/(1 - x - 8*x/(1 - 8*x/(1 - x - 10*x/(1 - ... (continued fraction).
G.f.: 1/Q(0), where Q(k) = 1 - x*(4*k+3) - 4*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = Sum_{k=0..n} C(n,k)*k!*2^k. - Marc LeBrun, Dec 07 2013
0 = a(n)*(2*a(n+1) - 5*a(n+2) + a(n+3)) + a(n+1)*(a(n+1) + a(n+2) - a(n+3)) + a(n+2)*a(n+2) if n > -2. - Michael Somos, Jan 02 2014
a(n) + (-2*n-1)*a(n-1) + 2*(n-1)*a(n-2) = 0. - R. J. Mathar, Jan 31 2014
a(n) = hypergeometric_U(1, n+2, 1/2)/2. - Peter Luschny, Nov 26 2014
From Peter Bala, Jan 30 2015: (Start)
a(n) = Integral_{x >= 0} (2*x + 1)^n*exp(-x) dx. (Cf. A000354.)
The e.g.f. y = exp(x)/(1 - 2*x) satisfies the differential equation (1 - 2*x)*y' = (3 - 2*x)*y. R. J. Mathar's recurrence above follows easily from this.
The sequence b(n) := 2^n*n! also satisfies R. J. Mathar's recurrence with b(0) = 1 and b(1) = 2. This leads to the continued fraction representation a(n) = 2^n*n!*( 1 + 1/(2 - 2/(5 - 4/(7 - ... - (2*n - 2)/(2*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/2) = 1 + 1/(2 - 2/(5 - 4/(7 - ... - (2*n - 2)/((2*n + 1) - ... )))). (End)
a(n) = 2^n*KummerU(-n, -n, 1/2). - Peter Luschny, May 10 2022
a(n) = n!*2^n*hypergeom([-n], [-n], 1/2). - Peter Luschny, Jul 28 2024
Extensions
Better description and formulas from Michael Somos
Comments