cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A175834 Number of real zeros of the polynomial whose coefficients are the decimal expansion of the golden ratio truncated to n places (A011551).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Michel Lagneau, Dec 05 2010

Keywords

Comments

a(n) = number of real zeros of the polynomial P(n,x) = sum_{k=0..n} p(k) x^k where p(k) are the digits of the decimal expansion of floor(GoldenRatio *10^n) and GoldenRatio = 1.6180339 ....

Examples

			a(4) = 2 because 16180 => P(4,x) = 8x+x^2+6x^3+x^4 has 2 real roots :
x0= - 6.053134348… and x1 = 0.
		

Crossrefs

Programs

  • Maple
    with(numtheory):Digits:=50: T:=array(1..45):for zz from 0 to 43 do:n:=floor(((1+sqrt(5))/2)*10^zz):   for i from 1 to 43 do: T[i]:=0:od: l:=length(n) : n0:=n:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q, 10):n0:=v :u: T[m]:=u:od: x:=fsolve(T[1]+ T[2]*z + T[3]*z^2+ T[4]*z^3+ T[5]*z^4 + T[6]*z^5 + T[7]*z^6 + T[8]*z^7 + T[9]*z^8 + T[10]*z^9+
      T[11]*z^10+ T[12]*z^11 + T[13]*z^12 + T[14]*z^13 + T[15]*z^14+ T[16]*z^15+ T[17]*z^16 + T[18]*z^17 + T[19]*z^18 + T[20]*z^19 + T[21]*z^20 + T[22]*z^21+ T[23]*z^22+ T[24]*z^23 + T[25]*z^24 + T[26]*z^25+ T[27]*z^26+ T[28]*z^27+ T[29]*z^28 + T[30]*z^29 + T[31]*z^30+ T[32]*z^31 + T[33]*z^32 + T[34]*z^33+ T[35]*z^34+ T[36]*z^35 + T[37]*z^36 + T[38]*z^37+ T[39]*z^38 + T[40]*z^39+ T[41]*z^40+ T[42]*z^41 + T[43]*z^42, z, real):x1:=[x]: x2:=nops(x1): printf ( "%d %d %d\n",zz,n,x2):od:

A276198 Smallest prime >= decimal expansion of phi truncated to n places (A011551), where phi is the golden ratio (A001622).

Original entry on oeis.org

2, 17, 163, 1619, 16183, 161807, 1618033, 16180349, 161803403, 1618033999, 16180339933, 161803398917, 1618033988749, 16180339887557, 161803398874991, 1618033988749901, 16180339887498961, 161803398874989661, 1618033988749894853, 16180339887498948503, 161803398874989484891
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2016

Keywords

Examples

			a(5) = 161807, since this is the smallest prime >= floor(phi*10^5) = 161803.
phi = 1.61803398874989484820458683436563811772...
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[Floor[GoldenRatio 10^n] - 1], {n, 0, 20}]

Formula

a(n) = A007918(A011551(n)).
a(n) = A000040(A000720(A011551(n)-1)+1).
a(A064119(n)-1) = A064117(n).

A011543 Decimal expansion of e truncated to n places.

Original entry on oeis.org

2, 27, 271, 2718, 27182, 271828, 2718281, 27182818, 271828182, 2718281828, 27182818284, 271828182845, 2718281828459, 27182818284590, 271828182845904, 2718281828459045, 27182818284590452, 271828182845904523, 2718281828459045235, 27182818284590452353, 271828182845904523536
Offset: 0

Views

Author

Keywords

Comments

a(n) <= A011544(n) <= a(n)+1. - Danny Rorabaugh, Mar 07 2015

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,edgs},edgs=RealDigits[E,10,nn][[1]];Table[ FromDigits[ Take[ edgs, n]],{n,nn}]] (* Harvey P. Dale, Oct 04 2017 *)
  • PARI
    a(n) = floor(exp(1)*10^n); \\ Michel Marcus, Mar 08 2015
    
  • Python
    from sympy import E
    def a(n): return int(E*10**n)
    print([a(n) for n in range(21)]) # Michael S. Branicky, Feb 27 2021

Formula

a(n) = floor(e*10^n).

A139260 Decimal expansion of Euler's constant (or Euler-Mascheroni constant) gamma truncated to n places.

Original entry on oeis.org

5, 57, 577, 5772, 57721, 577215, 5772156, 57721566, 577215664, 5772156649, 57721566490, 577215664901, 5772156649015, 57721566490153, 577215664901532, 5772156649015328, 57721566490153286, 577215664901532860
Offset: 1

Views

Author

Omar E. Pol, May 01 2008

Keywords

Examples

			n ... Successive digits of a(n)
1 ............ ( 5 )
2 ......... . ( 5 7 )
3 .......... ( 5 7 7 )
4 ......... ( 5 7 7 2 )
5 ........ ( 5 7 7 2 1 )
6 ....... ( 5 7 7 2 1 5 )
7 ...... ( 5 7 7 2 1 5 6 )
8 ..... ( 5 7 7 2 1 5 6 6 )
9 .... ( 5 7 7 2 1 5 6 6 4 )
10 .. ( 5 7 7 2 1 5 6 6 4 9 )
		

Crossrefs

Decimal expansion of gamma: A001620. Cf. A011543, A011545 A011551, A139258, A139259, A139261.

Programs

  • Mathematica
    With[{em=RealDigits[EulerGamma,10,20][[1]]},Table[FromDigits[Take[ em,n]], {n,20}]] (* Harvey P. Dale, Nov 22 2011 *)

A138116 Triangle read by rows: row n lists the first n digits of the decimal expansion of golden ratio phi.

Original entry on oeis.org

1, 1, 6, 1, 6, 1, 1, 6, 1, 8, 1, 6, 1, 8, 0, 1, 6, 1, 8, 0, 3, 1, 6, 1, 8, 0, 3, 3, 1, 6, 1, 8, 0, 3, 3, 9, 1, 6, 1, 8, 0, 3, 3, 9, 8, 1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4
Offset: 1

Views

Author

Omar E. Pol, Mar 14 2008

Keywords

Comments

Also, successive digits of A011551.

Examples

			Triangle begins:
      1
     1,6
    1,6,1
   1,6,1,8
  1,6,1,8,0
		

Crossrefs

Cf. A001622 (phi), A011551, A138072, A138073, A175834 (polynomial roots).

Programs

  • Mathematica
    s={};Do[AppendTo[s,RealDigits[GoldenRatio,10,n][[1]]],{n,12}];s//Flatten (* James C. McMahon, Jun 05 2025 *)

A195607 Numerator of floor(Phi*10^n)/10^n, where phi = (sqrt(5) + 1)/2 = A001622 is the Golden Ratio.

Original entry on oeis.org

1, 8, 161, 809, 809, 161803, 1618033, 16180339, 80901699, 404508497, 16180339887, 80901699437, 1618033988749, 8090169943749, 161803398874989, 809016994374947, 4045084971874737, 40450849718747371, 25281781074217107, 8090169943749474241
Offset: 0

Views

Author

M. F. Hasler, following a suggestion by Eric Angelini, Sep 21 2011

Keywords

Comments

Numerator of the decimal fraction of phi = 1.61803... truncated to a given number of decimal places.
The corresponding sequence for 1/phi = 0.61803... = phi-1 (also called the Golden Ratio) has a very similar behavior, because for both, the truncated decimal expansion can be simplified by the same factors 2^k*5^m.

Examples

			a(3) = 161 is the numerator of 1.61 = 161/100.
a(4) = 809 is the numerator of 1.618 = 1618/1000 = 809/500.
		

Crossrefs

Cf. A195603 (analog for Pi), A195604 (for e), A195606 (for gamma).

Programs

  • Mathematica
    Floor[GoldenRatio #]/#&/@(10^Range[0,20])//Numerator (* Harvey P. Dale, Apr 14 2023 *)
  • PARI
    a(n,c=sqrt(5)/2+.5)=numerator(c\.1^n/10^n)  \\ M. F. Hasler, Sep 21 2011
Showing 1-6 of 6 results.