A013661 Decimal expansion of Pi^2/6 = zeta(2) = Sum_{m>=1} 1/m^2.
1, 6, 4, 4, 9, 3, 4, 0, 6, 6, 8, 4, 8, 2, 2, 6, 4, 3, 6, 4, 7, 2, 4, 1, 5, 1, 6, 6, 6, 4, 6, 0, 2, 5, 1, 8, 9, 2, 1, 8, 9, 4, 9, 9, 0, 1, 2, 0, 6, 7, 9, 8, 4, 3, 7, 7, 3, 5, 5, 5, 8, 2, 2, 9, 3, 7, 0, 0, 0, 7, 4, 7, 0, 4, 0, 3, 2, 0, 0, 8, 7, 3, 8, 3, 3, 6, 2, 8, 9, 0, 0, 6, 1, 9, 7, 5, 8, 7, 0
Offset: 1
Examples
1.6449340668482264364724151666460251892189499012067984377355582293700074704032...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
- F. Aubonnet, D. Guinin and B. Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
- Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 97.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 262.
- W. Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington, D.C., 1999, p. xxii.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.4.1 and 5.16, pp. 20, 365.
- Hardy and Wright, 'An Introduction to the Theory of Numbers'. See Theorems 332 and 333.
- A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 10, 161-162.
- G. F. Simmons, Calculus Gems, Section B.15, B.24, pp. 270-271, 323-325, McGraw Hill, 1992.
- Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 99, Satz 1.
- A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 261.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- D. H. Bailey, J. M. Borwein, and D. M. Bradley, Experimental determination of Apéry-like identities for zeta(4n+2), arXiv:math/0505270 [math.NT], 2005-2006.
- Peter Bala, New series for old functions.
- Peter Bala, Formulas for A013661.
- David Benko and John Molokach, The Basel Problem as a Rearrangement of Series, The College Mathematics Journal, Vol. 44, No. 3 (May 2013), pp. 171-176.
- R. Calinger, Leonhard Euler: The First St. Petersburg Years (1727-1741), Historia Mathematica, Vol. 23, 1996, pp. 121-166.
- Robin Chapman, Evaluating Zeta(2).
- R. W. Clickery, Probability of two numbers being coprime.
- Alessio Del Vigna, On a solution to the Basel problem based on the fundamental theorem of calculus, arXiv:2104.01710 [math.HO], 2021.
- Leonhard Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
- Leonhard Euler, De summis serierum reciprocarum, E41.
- R. L. Graham, On finite sums of unit fractions, Proceedings of the London Mathematical Society, s3-14 (1964), pp. 193-207. doi:10.1112/plms/s3-14.2.193
- Michael D. Hirschhorn, A simple proof that zeta(2) = Pi^2/6, The Mathematical Intelligencer 33:3 (2011), pp 81-82.
- Melissa Larson, Verifying and discovering BBP-type formulas, 2008.
- Alain Lasjaunias and Jean-Paul Tran, A note on the equality Pi^2/6 = Sum_{n>=1} 1/n^2, arXiv:2312.02245 [math.HO], 2023.
- Math. Reference Project, The Zeta Function, Zeta(2).
- Math. Reference Project, The Zeta Function, Odds That Two Numbers Are Coprime".
- Romeo Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012.
- Jon Perry, Prime Product Paradox
- Simon Plouffe, Plouffe's Inverter, Zeta(2) or Pi**2/6 to 100000 digits.
- Simon Plouffe, Zeta(2) or Pi**2/6 to 10000 places.
- Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file)
- A. L. Robledo, value of the Riemann zeta function at s=2, PlanetMath.org.
- E. Sandifer, How Euler Did It, Estimating the Basel Problem.
- E. Sandifer, How Euler Did It, Basel Problem with Integrals.
- C. Tooth, Pi squared over six.
- Eric Weisstein's World of Mathematics, Dilogarithm.
- Eric Weisstein's World of Mathematics, Riemann Zeta Function zeta(2).
- Wikipedia, Basel Problem.
- Wikipedia, Bailey-Borwein-Plouffe formula.
- Herbert S. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics & Theoretical Computer Science, Vol 3, No 4 (1999).
- Index entries for transcendental numbers.
- Index entries for zeta function.
Crossrefs
Programs
-
Magma
pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi^2/6))); // Vincenzo Librandi, Oct 13 2015
-
Maple
evalf(Pi^2/6,120); # Muniru A Asiru, Oct 25 2018 # Calculates an approximation with n exact decimal places (small deviation # in the last digits are possible). Goes back to ideas of A. A. Markoff 1890. zeta2 := proc(n) local q, s, w, v, k; q := 0; s := 0; w := 1; v := 4; for k from 2 by 2 to 7*n/2 do w := w*v/k; q := q + v; v := v + 8; s := s + 1/(w*q); od; 12*s; evalf[n](%) end: zeta2(1000); # Peter Luschny, Jun 10 2020
-
Mathematica
RealDigits[N[Pi^2/6, 100]][[1]] RealDigits[Zeta[2],10,120][[1]] (* Harvey P. Dale, Jan 08 2021 *)
-
Maxima
fpprec : 100$ ev(bfloat(zeta(2)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
-
PARI
default(realprecision, 200); Pi^2/6
-
PARI
default(realprecision, 200); dilog(1)
-
PARI
default(realprecision, 200); zeta(2)
-
PARI
A013661(n)={localprec(n+2); Pi^2/.6\10^n%10} \\ Corrected and improved by M. F. Hasler, Apr 20 2021
-
PARI
default(realprecision, 20080); x=Pi^2/6; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b013661.txt", n, " ", d)); \\ Harry J. Smith, Apr 29 2009
-
PARI
sumnumrat(1/x^2, 1) \\ Charles R Greathouse IV, Jan 20 2022
-
Python
# Use some guard digits when computing. # BBP formula (3 / 16) P(2, 64, 6, (16, -24, -8, -6, 1, 0)). from decimal import Decimal as dec, getcontext def BBPzeta2(n: int) -> dec: getcontext().prec = n s = dec(0); f = dec(1); g = dec(64) for k in range(int(n * 0.5536546824812272) + 1): sixk = dec(6 * k) s += f * ( dec(16) / (sixk + 1) ** 2 - dec(24) / (sixk + 2) ** 2 - dec(8) / (sixk + 3) ** 2 - dec(6) / (sixk + 4) ** 2 + dec(1) / (sixk + 5) ** 2 ) f /= g return (s * dec(3)) / dec(16) print(BBPzeta2(2000)) # Peter Luschny, Nov 01 2023
Formula
Limit_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/2))) = zeta(2) and in general we have lim_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/m))) = zeta(m), m >= 2. - Yalcin Aktar, Jul 14 2005
Equals Integral_{x=0..1} (log(x)/(x-1)) dx or Integral_{x>=1} (log(x/(x-1))/x) dx. - Jean-François Alcover, May 30 2013
For s >= 2 (including Complex), zeta(s) = Product_{n >= 1} prime(n)^s/(prime(n)^s - 1). - Fred Daniel Kline, Apr 10 2014
Also equals 1 + Sum_{n>=0} (-1)^n*StieltjesGamma(n)/n!. - Jean-François Alcover, May 07 2014
zeta(2) = Sum_{n>=1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n). - Mikael Aaltonen, Jan 10 2015
zeta(2) = Sum_{n>=1} (((sqrt(5)-1)/2/sqrt(5))^n/n^2) + Sum_{n>=1} (((sqrt(5)+1)/2/sqrt(5))^n/ n^2) + log((sqrt(5)-1)/2/sqrt(5))log((sqrt(5)+1)/2/sqrt(5)). - Seiichi Kirikami, Oct 14 2015
The above formula can also be written zeta(2) = dilog(x) + dilog(y) + log(x)*log(y) where x = (1-1/sqrt(5))/2 and y=(1+1/sqrt(5))/2. - Peter Luschny, Oct 16 2015
zeta(2) = Integral_{x>=0} 1/(1 + e^x^(1/2)) dx, because (1 - 1/2^(s-1))*Gamma[1 + s]*Zeta[s] = Integral_{x>=0} 1/(1 + e^x^(1/s)) dx. After Jean-François Alcover in A002162. - Mats Granvik, Sep 12 2016
zeta(2) = Product_{n >= 1} (144*n^4)/(144*n^4 - 40*n^2 + 1). - Fred Daniel Kline, Oct 29 2016
zeta(2) = lim_{n->oo} (1/n) * Sum_{k=1..n} A017665(k)/A017666(k). - Dimitri Papadopoulos, May 10 2019 [See the Walfisz reference, and a comment in A284648, citing also the Sándor et al. Handbook. - Wolfdieter Lang, Aug 22 2019]
Equals Sum_{k>=1} H(k)/(k*(k+1)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 16 2020
Equals (8/3)*(1/2)!^4 = (8/3)*Gamma(3/2)^4. - Gary W. Adamson, Aug 17 2021
Equals ((m+1)/m) * Integral_{x=0..1} log(Sum {k=0..m} x^k )/x dx, m > 0 (Aubonnet reference). - _Bernard Schott, Feb 11 2022
Equals 1 + Sum_{n>=1} n*(zeta(n+2)-1). - Richard R. Forberg, Jun 04 2023; improved by Natalia L. Skirrow, Jul 25 2025
Equals Psi'(1) where Psi'(x) is the trigamma function (by Abramowitz Stegun 6.4.2). - Andrea Pinos, Oct 22 2024
Equals Integral_{x=0..1} Integral_{y=0..1} 1/(1 - x*y) dy dx. - Kritsada Moomuang, May 22 2025
Equals 1 + Sum_{n>=1} 1/(n^2*(n+1)). - Natalia L. Skirrow, Jul 25 2025
Extensions
Edited by N. J. A. Sloane, Nov 22 2023
Comments