cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014494 Even triangular numbers.

Original entry on oeis.org

0, 6, 10, 28, 36, 66, 78, 120, 136, 190, 210, 276, 300, 378, 406, 496, 528, 630, 666, 780, 820, 946, 990, 1128, 1176, 1326, 1378, 1540, 1596, 1770, 1830, 2016, 2080, 2278, 2346, 2556, 2628, 2850, 2926, 3160, 3240, 3486, 3570, 3828, 3916, 4186, 4278, 4560
Offset: 0

Views

Author

Keywords

Comments

Even numbers of the form n*(n+1)/2.
Even generalized hexagonal numbers. - Omar E. Pol, Apr 24 2016
The sequence terms occur as the exponents in the expansion of (1 - q^6) * Product_{n >= 1} (1 - q^(16*n-6))*(1 - q^(16*n))*(1 - q^(16*n+6)) = Sum_{n in Z} (-1)^n * q^(2*n*(4*n+1)) = 1 - q^6 - q^10 + q^28 + q^36 - q^66 - q^78 + + - - . - Peter Bala, Dec 23 2024

Crossrefs

See also similar sequences listed in A299645.

Programs

  • Magma
    [1/2*(2*n+1)*(2*n+1-(-1)^n): n in [0..50]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[2Ceiling[n/2]*(2n + 1), {n, 0, 47}] (* Robert G. Wilson v, Nov 05 2004 *)
    1/2 (2#+1)(2#+1-(-1)^#) &/@Range[0,47] (* Ant King, Nov 18 2010 *)
    Select[1/2 #(#+1) &/@Range[0,95],EvenQ] (* Ant King, Nov 18 2010 *)
  • PARI
    a(n)=(2*n+1)*(2*n+1-(-1)^n)/2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Python
    def A014494(n): return (2*n+1)*(n+n%2) # Chai Wah Wu, Mar 11 2022

Formula

From Ant King, Nov 18 2010: (Start)
a(n) = (2*n+1)*(2*n+1-(-1)^n)/2.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). (End)
G.f.: -2*x*(3*x^2+2*x+3)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = A000217(A014601(n)). - Reinhard Zumkeller, Oct 04 2004
a(n) = A014493(n+1)-(2n+1)*(-1)^n. - R. J. Mathar, Sep 15 2009
a(n) = A193867(n+1) - 1. - Omar E. Pol, Aug 17 2011
Sum_{n>=1} 1/a(n) = 2 - Pi/2. - Robert Bilinski, Jan 20 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2)-2. - Amiram Eldar, Mar 06 2022
E.g.f.: x*(5 + 2*x)*cosh(x) + (1 + x)*(1 + 2*x)*sinh(x). - Stefano Spezia, Dec 24 2024

Extensions

More terms from Erich Friedman