A014494 Even triangular numbers.
0, 6, 10, 28, 36, 66, 78, 120, 136, 190, 210, 276, 300, 378, 406, 496, 528, 630, 666, 780, 820, 946, 990, 1128, 1176, 1326, 1378, 1540, 1596, 1770, 1830, 2016, 2080, 2278, 2346, 2556, 2628, 2850, 2926, 3160, 3240, 3486, 3570, 3828, 3916, 4186, 4278, 4560
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[1/2*(2*n+1)*(2*n+1-(-1)^n): n in [0..50]]; // Vincenzo Librandi, Aug 18 2011
-
Mathematica
Table[2Ceiling[n/2]*(2n + 1), {n, 0, 47}] (* Robert G. Wilson v, Nov 05 2004 *) 1/2 (2#+1)(2#+1-(-1)^#) &/@Range[0,47] (* Ant King, Nov 18 2010 *) Select[1/2 #(#+1) &/@Range[0,95],EvenQ] (* Ant King, Nov 18 2010 *)
-
PARI
a(n)=(2*n+1)*(2*n+1-(-1)^n)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
Python
def A014494(n): return (2*n+1)*(n+n%2) # Chai Wah Wu, Mar 11 2022
Formula
From Ant King, Nov 18 2010: (Start)
a(n) = (2*n+1)*(2*n+1-(-1)^n)/2.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). (End)
G.f.: -2*x*(3*x^2+2*x+3)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = A014493(n+1)-(2n+1)*(-1)^n. - R. J. Mathar, Sep 15 2009
a(n) = A193867(n+1) - 1. - Omar E. Pol, Aug 17 2011
Sum_{n>=1} 1/a(n) = 2 - Pi/2. - Robert Bilinski, Jan 20 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2)-2. - Amiram Eldar, Mar 06 2022
E.g.f.: x*(5 + 2*x)*cosh(x) + (1 + x)*(1 + 2*x)*sinh(x). - Stefano Spezia, Dec 24 2024
Extensions
More terms from Erich Friedman
Comments