cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A014510 a(n) = floor( Gamma(n+1/2) ).

Original entry on oeis.org

1, 0, 1, 3, 11, 52, 287, 1871, 14034, 119292, 1133278, 11899423, 136843365, 1710542068, 23092317922, 334838609873, 5189998453040, 85634974475162, 1498612053315336, 27724322986333718, 540624298233507504
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    seq(floor(evalf(GAMMA(n+1/2),100)), n=0..24);
  • Mathematica
    a[n_] := Floor[Gamma[n + 1/2]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)

Formula

a(n)=floor((2n-1)!!/2^n*sqrt(Pi)) where (2n-1)!!=prod(k=1, n, 2*k-1); asymptotically a(n)=n!/sqrt(n)*(1-1/(8n)+1/(128n^2)-5/(1024n^3)+O(1/n^4)) - Benoit Cloitre, Apr 29 2003

A014511 a(n) = floor( Gamma(n+1/3) ).

Original entry on oeis.org

2, 0, 1, 2, 9, 40, 214, 1355, 9940, 82834, 773118, 7988887, 90540729, 1116669003, 14888920041, 213407853922, 3272253760146, 53446811415729, 926411397872639, 16984208960998389, 328361373245968867
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    seq(floor(evalf(GAMMA(n+1/3),100)), n=0..24);
  • Mathematica
    a[n_] := Floor[Gamma[n + 1/3]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)

A014512 a(n) = floor( Gamma(n+2/3) ).

Original entry on oeis.org

1, 0, 1, 4, 14, 68, 389, 2593, 19884, 172328, 1665837, 17768938, 207304278, 2625854188, 35886673906, 526337883959, 8245960182038, 137432669700633, 2427977164711192, 45322240407942257, 891337394689531069
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    seq(floor(evalf(GAMMA(n+2/3),100)), n=0..24);
  • Mathematica
    a[n_] := Floor[Gamma[n + 2/3]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)

A014514 a(n) = floor( Gamma(n+3/4) ).

Original entry on oeis.org

1, 0, 1, 4, 16, 78, 453, 3057, 23698, 207358, 2021746, 21733773, 255371835, 3255990905, 44769874946, 660355655453, 10400601573396, 174210076354396, 3092228855290534, 57979291036697518, 1145090997974775999, 23760638207976601980, 516793881023491093069
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n + 3/4)): n in [0..25]]; // Vincenzo Librandi, Aug 01 2025
  • Maple
    seq(floor(evalf(GAMMA(n+3/4),100)), n=0..24);
  • Mathematica
    a[n_] := Floor[Gamma[n + 3/4]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)

A014516 Nearest integer to Gamma(n + 1/3).

Original entry on oeis.org

3, 1, 1, 3, 9, 40, 214, 1355, 9940, 82834, 773118, 7988888, 90540730, 1116669003, 14888920041, 213407853923, 3272253760147, 53446811415729, 926411397872639, 16984208960998390, 328361373245968868, 6676681256001366975, 142435866794695828799, 3181067691748206843170, 74224912807458159673978
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+1/3),100)), n=0..24) ];
  • Mathematica
    a[n_] := Round[Gamma[n + 1/3]]; Array[a, 25, 0] (* Amiram Eldar, Sep 20 2019 *)
  • PARI
    a(n) = round(gamma(n+1/3)); \\ Michel Marcus, Sep 13 2018

Extensions

Corrected and extended by Robert Israel, Sep 12 2018

A014517 Nearest integer to Gamma(n+2/3).

Original entry on oeis.org

1, 1, 2, 4, 15, 69, 389, 2594, 19884, 172328, 1665838, 17768938, 207304278, 2625854188, 35886673906, 526337883960, 8245960182038, 137432669700634, 2427977164711192, 45322240407942258, 891337394689531069
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+2/3),100)), n=0..24) ];
  • Mathematica
    a[n_] := Round[Gamma[n + 2/3]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)
  • PARI
    a(n) = round(gamma(n + 2/3)); \\ Michel Marcus, Nov 05 2018

Extensions

a(15), a(17), and a(19) corrected by Sean A. Irvine, Nov 04 2018

A014518 Nearest integer to Gamma(n+1/4).

Original entry on oeis.org

4, 1, 1, 3, 8, 35, 185, 1155, 8377, 69106, 639233, 6552134, 73711509, 902965986, 11964299312, 170491265198, 2599991794272, 42249866656927, 728810199831991, 13300786146933842, 256040133328476466
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+1/4),100)), n=0..24) ];
  • Mathematica
    a[n_] := Round[Gamma[n + 1/4]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)
  • PARI
    a(n) = round(gamma(n + 1/4)); \\ Michel Marcus, Nov 05 2018

Extensions

a(20) corrected by Sean A. Irvine, Nov 04 2018

A014521 Nearest integer to Gamma(n+1/2).

Original entry on oeis.org

2, 1, 1, 3, 12, 52, 288, 1871, 14034, 119292, 1133278, 11899423, 136843365, 1710542068, 23092317922, 334838609874, 5189998453040, 85634974475162, 1498612053315336, 27724322986333718, 540624298233507504
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+1/2),100)), n=0..24) ];
  • Mathematica
    Table[Round[Gamma[n + 1/2]], {n, 0, 26}]
  • PARI
    a(n) = round(gamma(n + 1/2)); \\ Michel Marcus, Nov 05 2018

Extensions

a(15) corrected by Sean A. Irvine, Nov 04 2018

A014522 Nearest integer to Gamma(n+3/4).

Original entry on oeis.org

1, 1, 2, 4, 17, 79, 453, 3058, 23698, 207359, 2021746, 21733773, 255371836, 3255990905, 44769874946, 660355655454, 10400601573397, 174210076354396, 3092228855290534, 57979291036697519, 1145090997974775999, 23760638207976601980, 516793881023491093070
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+3/4),100)), n=0..24) ];
  • Mathematica
    a[n_] := Round[Gamma[n + 3/4]]; Array[a, 23, 0] (* Amiram Eldar, Sep 20 2019 *)
  • PARI
    a(n) = round(gamma(n+3/4)) \\ Felix Fröhlich, Nov 05 2018

Extensions

a(15), a(16), and a(19) corrected by Sean A. Irvine, Nov 05 2018

A370397 a(n) = floor(g(n + 1/4)), where g(x) is the function defined for all real numbers except the negative integers by the recurrence formula g(x+1) = g(x)*(x+1), with g(x) = 1 for 0 <= x < 1.

Original entry on oeis.org

1, 1, 2, 9, 38, 203, 1274, 9241, 76242, 705241, 7228724, 81323154, 996208647, 13199764580, 188096645269, 2868473840361, 46612699905873, 804069073376312, 14674260589117694, 282479516340515613, 5720210205895441171
Offset: 0

Views

Author

Lechoslaw Ratajczak, Feb 17 2024

Keywords

Comments

Connection between the gamma function and g(n): gamma(n + 1/k)/gamma(1/k) = g(n + 1/k)/(k*n + 1) for k=1,2,3,...

Examples

			a(0) = 1 because: floor(g(0 + 1/4)) = floor(g(1/4)) = floor(1) = 1.
a(1) = 1 because: floor(g(1 + 1/4)) = floor(g(5/4)) = floor(g(1/4)*(5/4)) = floor((1)*(5/4)) = 1.
a(2) = 2 because: floor(g(2 + 1/4)) = floor(g(9/4)) = floor(g(5/4)*(9/4)) = floor((5/4)*(9/4)) = 2.
a(3) = 9 because: floor(g(3 + 1/4)) = floor(g(13/4)) = floor(g(9/4)*(13/4)) = floor((5/4)*(9/4)*(13/4)) = 9.
a(4) = 38 because: floor(g(4 + 1/4)) = floor(g(17/4)) = floor(g(13/4)*(17/4)) = floor((5/4)*(9/4)*(13/4)*(17/4)) = 38.
		

Crossrefs

Programs

  • Maxima
    makelist(floor(product(4*k+1, k, 1, n)/(4^n)), n, 0, 50);
    
  • Python
    from math import prod
    def A370397(n): return prod(range(5,(n<<2)+2,4))>>(n<<1) # Chai Wah Wu, Apr 28 2024

Formula

g(x) = Product_{k=0..floor(x - 1)} (x - k) for x >= 1.
g(x) = 1/(Product_{k=1..floor(-(x - 1))} (x + k)) for x < 0.
a(n) = floor((Product_{k=1..n} (4*k + 1))/4^n).
a(n) = floor(Product_{k=0..floor(n - 3/4)} (n - k + 1/4)).
a(n) = floor((4*n + 1)*gamma(n + 1/4)/gamma(1/4)).
Showing 1-10 of 10 results.