cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A087798 a(n) = 9*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 9.

Original entry on oeis.org

2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, 432083484, 3936182123, 35857722591, 326655685442, 2975758891569, 27108485709563, 246952130277636, 2249677658208287, 20494051054152219, 186696137145578258
Offset: 0

Views

Author

Nikolay V. Kosinov, Dmitry V. Poljakov (kosinov(AT)unitron.com.ua), Oct 10 2003

Keywords

Comments

a(n+1)/a(n) converges to (9 + sqrt(85))/2.
For more information about this type of recurrence follow the Khovanova link and see A054413 and A086902. - Johannes W. Meijer, Jun 12 2010

Examples

			a(4) = 9*a(3) + a(2) = 9*756 + 83 = 6887.
		

Crossrefs

Cf. A014511.

Programs

  • Magma
    I:=[2,9]; [n le 2 select I[n] else 9*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 2, a[1] == 9, a[n] == 9 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)
    LinearRecurrence[{9,1}, {2,9}, 30] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    x='x+O('x^30); Vec((2-9*x)/(1-9*x-x^2)) \\ G. C. Greubel, Nov 07 2018

Formula

a(n) = ((9 + sqrt(85))/2)^n + ((9 - sqrt(85))/2)^n.
G.f.: (2 - 9*x)/(1 - 9*x - x^2). - Philippe Deléham, Nov 02 2008
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 9*A097840(n), a(2n) = A099373(n).
a(3n+1) = A041150(5n), a(3n+2) = A041150(5n+3), a(3n+3) = 2*A041150(5n+4).
Lim_{k->infinity} a(n+k)/a(k) = (A087798(n) + A099371(n)*sqrt(85))/2.
Lim_{n->infinity} A087798(n)/A099371(n) = sqrt(85). (End)

Extensions

More terms from Ray Chandler, Nov 06 2003

A014510 a(n) = floor( Gamma(n+1/2) ).

Original entry on oeis.org

1, 0, 1, 3, 11, 52, 287, 1871, 14034, 119292, 1133278, 11899423, 136843365, 1710542068, 23092317922, 334838609873, 5189998453040, 85634974475162, 1498612053315336, 27724322986333718, 540624298233507504
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    seq(floor(evalf(GAMMA(n+1/2),100)), n=0..24);
  • Mathematica
    a[n_] := Floor[Gamma[n + 1/2]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)

Formula

a(n)=floor((2n-1)!!/2^n*sqrt(Pi)) where (2n-1)!!=prod(k=1, n, 2*k-1); asymptotically a(n)=n!/sqrt(n)*(1-1/(8n)+1/(128n^2)-5/(1024n^3)+O(1/n^4)) - Benoit Cloitre, Apr 29 2003

A014513 a(n) = floor( Gamma(n+1/4) ).

Original entry on oeis.org

3, 0, 1, 2, 8, 35, 184, 1155, 8376, 69106, 639232, 6552134, 73711509, 902965985, 11964299312, 170491265198, 2599991794272, 42249866656927, 728810199831991, 13300786146933842, 256040133328476465
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    seq(floor(evalf(GAMMA(n+1/4),100)), n=0..24);
  • Mathematica
    a[n_] := Floor[Gamma[n + 1/4]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)

A014512 a(n) = floor( Gamma(n+2/3) ).

Original entry on oeis.org

1, 0, 1, 4, 14, 68, 389, 2593, 19884, 172328, 1665837, 17768938, 207304278, 2625854188, 35886673906, 526337883959, 8245960182038, 137432669700633, 2427977164711192, 45322240407942257, 891337394689531069
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    seq(floor(evalf(GAMMA(n+2/3),100)), n=0..24);
  • Mathematica
    a[n_] := Floor[Gamma[n + 2/3]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)

A014514 a(n) = floor( Gamma(n+3/4) ).

Original entry on oeis.org

1, 0, 1, 4, 16, 78, 453, 3057, 23698, 207358, 2021746, 21733773, 255371835, 3255990905, 44769874946, 660355655453, 10400601573396, 174210076354396, 3092228855290534, 57979291036697518, 1145090997974775999, 23760638207976601980, 516793881023491093069
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n + 3/4)): n in [0..25]]; // Vincenzo Librandi, Aug 01 2025
  • Maple
    seq(floor(evalf(GAMMA(n+3/4),100)), n=0..24);
  • Mathematica
    a[n_] := Floor[Gamma[n + 3/4]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)

A014516 Nearest integer to Gamma(n + 1/3).

Original entry on oeis.org

3, 1, 1, 3, 9, 40, 214, 1355, 9940, 82834, 773118, 7988888, 90540730, 1116669003, 14888920041, 213407853923, 3272253760147, 53446811415729, 926411397872639, 16984208960998390, 328361373245968868, 6676681256001366975, 142435866794695828799, 3181067691748206843170, 74224912807458159673978
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+1/3),100)), n=0..24) ];
  • Mathematica
    a[n_] := Round[Gamma[n + 1/3]]; Array[a, 25, 0] (* Amiram Eldar, Sep 20 2019 *)
  • PARI
    a(n) = round(gamma(n+1/3)); \\ Michel Marcus, Sep 13 2018

Extensions

Corrected and extended by Robert Israel, Sep 12 2018

A014517 Nearest integer to Gamma(n+2/3).

Original entry on oeis.org

1, 1, 2, 4, 15, 69, 389, 2594, 19884, 172328, 1665838, 17768938, 207304278, 2625854188, 35886673906, 526337883960, 8245960182038, 137432669700634, 2427977164711192, 45322240407942258, 891337394689531069
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+2/3),100)), n=0..24) ];
  • Mathematica
    a[n_] := Round[Gamma[n + 2/3]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)
  • PARI
    a(n) = round(gamma(n + 2/3)); \\ Michel Marcus, Nov 05 2018

Extensions

a(15), a(17), and a(19) corrected by Sean A. Irvine, Nov 04 2018

A014518 Nearest integer to Gamma(n+1/4).

Original entry on oeis.org

4, 1, 1, 3, 8, 35, 185, 1155, 8377, 69106, 639233, 6552134, 73711509, 902965986, 11964299312, 170491265198, 2599991794272, 42249866656927, 728810199831991, 13300786146933842, 256040133328476466
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+1/4),100)), n=0..24) ];
  • Mathematica
    a[n_] := Round[Gamma[n + 1/4]]; Array[a, 21, 0] (* Amiram Eldar, Sep 20 2019 *)
  • PARI
    a(n) = round(gamma(n + 1/4)); \\ Michel Marcus, Nov 05 2018

Extensions

a(20) corrected by Sean A. Irvine, Nov 04 2018

A014521 Nearest integer to Gamma(n+1/2).

Original entry on oeis.org

2, 1, 1, 3, 12, 52, 288, 1871, 14034, 119292, 1133278, 11899423, 136843365, 1710542068, 23092317922, 334838609874, 5189998453040, 85634974475162, 1498612053315336, 27724322986333718, 540624298233507504
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+1/2),100)), n=0..24) ];
  • Mathematica
    Table[Round[Gamma[n + 1/2]], {n, 0, 26}]
  • PARI
    a(n) = round(gamma(n + 1/2)); \\ Michel Marcus, Nov 05 2018

Extensions

a(15) corrected by Sean A. Irvine, Nov 04 2018

A014522 Nearest integer to Gamma(n+3/4).

Original entry on oeis.org

1, 1, 2, 4, 17, 79, 453, 3058, 23698, 207359, 2021746, 21733773, 255371836, 3255990905, 44769874946, 660355655454, 10400601573397, 174210076354396, 3092228855290534, 57979291036697519, 1145090997974775999, 23760638207976601980, 516793881023491093070
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 255.

Crossrefs

Programs

  • Maple
    [ seq(round(evalf(GAMMA(n+3/4),100)), n=0..24) ];
  • Mathematica
    a[n_] := Round[Gamma[n + 3/4]]; Array[a, 23, 0] (* Amiram Eldar, Sep 20 2019 *)
  • PARI
    a(n) = round(gamma(n+3/4)) \\ Felix Fröhlich, Nov 05 2018

Extensions

a(15), a(16), and a(19) corrected by Sean A. Irvine, Nov 05 2018
Showing 1-10 of 10 results.