cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A046148 Number of n-digit numbers with maximal multiplicative persistence A014553.

Original entry on oeis.org

10, 1, 9, 12, 20, 2430, 5229, 7448, 282852, 88200, 8015040, 200676960, 2701775518, 24655323238, 15765750, 1715313600, 59049874884, 1112489914536, 14162129381400, 135917876094000, 1050596838951660, 6832549561749912, 38554260751029408, 193081920969057120
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    mper[n_] := Block[{k=0, m=n}, While[m>9, k++; m = Times @@ IntegerDigits@ m]; k]; mxper = {1, 4, 5, 6, 7, 7, 8, 9, 9, 10, 10, 10}; multi[w_] := Total[w]!/Times @@ (w!); a[1]=10; a[n_] := Sum[ Total[ If[ mxper[[n]] == 1 + mper[Times @@ (Range[9]^#)], multi[#], 0] & /@ Permutations[p]], {p, IntegerPartitions[n, {9}, Range[0, n]]}]; Array[a, 12] (* Giovanni Resta, Sep 01 2018 *)

Extensions

a(8)-a(12) from Donovan Johnson, Mar 30 2010
a(13)-a(24) from Giovanni Resta, Aug 31 2018

A046150 Largest n-digit number with maximal multiplicative persistence A014553.

Original entry on oeis.org

9, 77, 976, 8876, 98886, 997762, 9999996, 99988862, 999888621, 9998888773, 99988887731, 999888877311, 9998888773111, 99988887731111, 998888887777772, 9988888877777721, 99999999998777772, 999999999987777721, 9999999999877777211, 99999999998777772111
Offset: 1

Views

Author

Keywords

Comments

Since there exists no number < 10^233 with multiplicative persistence 12, a(n) = 99999999998777772 * 10^(n-17) + (10^(n-17)-1)/9 for 17 <= n < 233. - Sean A. Irvine, Apr 05 2021

Crossrefs

Extensions

a(8)-a(18) from Donovan Johnson, Mar 30 2010
a(19)-a(20) from Sean A. Irvine, Apr 05 2021

A046149 Smallest n-digit number with maximal multiplicative persistence A014553.

Original entry on oeis.org

0, 77, 679, 6788, 68889, 168889, 2677889, 26888999, 126888999, 3778888999, 13778888999, 113778888999, 1113778888999, 11113778888999, 277777788888899, 1277777788888899, 11277777788888899, 111277777788888899
Offset: 1

Views

Author

Keywords

Comments

Since there exists no number k <= 10^200 with multiplicative persistence 12, a(n) = (10^(n-15)-1)/9*10^15 + 277777788888899 for 15 <= n <= 200. - A.H.M. Smeets, Sep 18 2018

Crossrefs

Extensions

a(8)-a(18) from Donovan Johnson, Mar 30 2010

A035927 One less than number of n-multisets chosen from a 10-set.

Original entry on oeis.org

0, 9, 54, 219, 714, 2001, 5004, 11439, 24309, 48619, 92377, 167959, 293929, 497419, 817189, 1307503, 2042974, 3124549, 4686824, 6906899, 10015004, 14307149, 20160074, 28048799, 38567099, 52451255, 70607459, 94143279
Offset: 0

Views

Author

Keywords

Comments

Number of distinct n-digit numbers up to permutations of digits. - Michael Somos, Jul 11 2002
Equivalently, for n > 0, a(n) = number of n-digit decimal numbers d_1 d_2 ... d_n with d_1 > 0 and d_1 >= d_2 >= ... >= d_n >= 0.. - N. J. A. Sloane, Jul 13 2023

Crossrefs

Equals A000582 - 1. Cf. A014553, A179239.

Programs

  • Maple
    binomial(10+n-1,n)-1;
  • Mathematica
    Table[Binomial[9 + n, n] - 1, {n, 0, 27}] (* Michael De Vlieger, Jul 14 2015 *)
    CoefficientList[Series[1/(1-x)^10-1/(1-x),{x,0,30}],x] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,9,54,219,714,2001,5004,11439,24309,48619},30] (* Harvey P. Dale, Jul 11 2023 *)
  • PARI
    a(n)=if(n<0,0,binomial(n+9,9)-1)

Formula

G.f.: 1/(1-x)^10-1/(1-x). - Michael Somos, Jul 11 2002

A258584 Numbers n such that n = Sum_{j>=1} c(j) where c(0) = n, c(j) = floor(c(j-1)/10^k)*(c(j-1) mod 10^k) for j>0, and k is half the number of digits of n, rounded up if the number of digits of n is odd.

Original entry on oeis.org

86, 860, 1975, 2160, 3575, 19750, 21600, 35750, 43614, 51884, 65625, 479900, 868688, 967750, 1435575, 1548384, 1696875, 4799000, 8686880, 9677500, 28874200, 34095100, 38748800, 39214560, 47613625, 53415625, 148385715, 156293216, 288742000, 340951000, 387488000
Offset: 1

Views

Author

Pieter Post, Nov 06 2015

Keywords

Comments

If n is an odd-digit decimal number, the first half is one digit smaller than the second half. For example, 43614 is in the sequence, because 43*614 = 26402, 26*402 = 10452, 10*452 = 4520, 4*520 = 2080, 2*80 = 160. Here the iteration stops because 160 has three digits, so the first half of the next multiplication is zero. 43614 = 26402 + 10452 + 4520 + 2080 + 160.
If n is an even-digit decimal number, the first half and the second half have the same length. For example, 868688 is in the sequence because 868*688 = 597184, 597*184 = 109848, 109*848 = 92432, 92*432 = 39744, 39*744 = 29016, 29*16 = 464, and here the iteration stops. 868688 = 597184 + 109848 + 92432 + 39744 + 29016 + 464.
If n is in the sequence and has an even number of digits, then 10*n is also in the sequence. - Jon E. Schoenfield, Nov 07 2015

Examples

			86 is in the sequence because 8*6 = 48, 4*8 = 32 and 3*2 = 6. And 86 = 48 + 32 + 6.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{i = Ceiling[IntegerLength[n]/2], g}, g[x_] := If[IntegerLength@ x <= i, x, Times @@ (FromDigits /@ {If[IntegerLength@ x - i == 0, Nothing, Take[IntegerDigits@ x, IntegerLength@ x - i]], Take[IntegerDigits@ x, -i]})]; Total@ Rest@ Most@ FixedPointList[g, n] == n]; Select[Range@ 500000, fQ] (* Michael De Vlieger, Nov 06 2015 *)
  • Python
    def pod(n, m):
        kk = 1
        while n > 0:
            kk= kk*(n%m)
            n =int(n//m)
        return kk
    for b in range(0, 6):
        dd, bb=0, (b-1)//2+2
        j=10**bb
        for c in range (10*j, 100*j):
            d, a, ca=0, 0, pod(c, j)
            while ca>0:
                d, a=d+ca, a+1
                if ca
    				

Extensions

a(21)-a(31) from Jon E. Schoenfield, Nov 07 2015
Obsolete b-file deleted by N. J. A. Sloane, Jan 05 2019
Showing 1-5 of 5 results.