A015531 Linear 2nd order recurrence: a(n) = 4*a(n-1) + 5*a(n-2).
0, 1, 4, 21, 104, 521, 2604, 13021, 65104, 325521, 1627604, 8138021, 40690104, 203450521, 1017252604, 5086263021, 25431315104, 127156575521, 635782877604, 3178914388021, 15894571940104, 79472859700521, 397364298502604, 1986821492513021, 9934107462565104
Offset: 0
Links
- Iain Fox, Table of n, a(n) for n = 0..1431 (terms 0..1000 from Vincenzo Librandi)
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014.
- Index entries for linear recurrences with constant coefficients, signature (4,5).
Programs
-
Magma
[Round(5^n/6): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
Maple
seq(round(5^n/6), n=0..25); # Mircea Merca, Dec 28 2010
-
Mathematica
LinearRecurrence[{4,5},{0,1},30] (* Harvey P. Dale, Jul 09 2017 *)
-
PARI
a(n)=5^n\/6 ; \\ Charles R Greathouse IV, Apr 14 2014
-
PARI
first(n) = Vec(x/((1 - 5*x)*(1 + x)) + O(x^n), -n) \\ Iain Fox, Dec 30 2017
-
Sage
[lucas_number1(n,4,-5) for n in range(0, 22)] # Zerinvary Lajos, Apr 23 2009
Formula
From Paul Barry, Apr 20 2003: (Start)
a(n) = (5^n -(-1)^n)/6.
G.f.: x/((1-5*x)*(1+x)).
E.g.f.(exp(5*x)-exp(-x))/6. (End) (corrected by M. F. Hasler, Jan 29 2012)
a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*6^(k-1). - Paul Barry, May 13 2003
a(n) = 5^(n-1) - a(n-1). - Emeric Deutsch, Apr 01 2004
a(n) = ((2+sqrt(9))^n - (2-sqrt(9))^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
a(n) = round(5^n/6). - Mircea Merca, Dec 28 2010
The logarithmic generating function 1/6*log((1+x)/(1-5*x)) = x + 4*x^2/2 + 21*x^3/3 + 104*x^4/4 + ... has compositional inverse 6/(5+exp(-6*x)) - 1, the e.g.f. for a signed version of A213128. - Peter Bala, Jun 24 2012
a(n) = (-1)^(n-1)*Sum_{k=0..(n-1)} A135278(n-1,k)*(-6)^k = (5^n - (-1)^n)/6 = (-1)^(n-1)*Sum_{k=0..(n-1)} (-5)^k. Equals (-1)^(n-1)*Phi(n,-5) when n is an odd prime, where Phi is the cyclotomic polynomial. - Tom Copeland, Apr 14 2014
Comments