A090018
a(n) = 6*a(n-1) + 3*a(n-2) for n > 2, a(0)=1, a(1)=6.
Original entry on oeis.org
1, 6, 39, 252, 1629, 10530, 68067, 439992, 2844153, 18384894, 118841823, 768205620, 4965759189, 32099171994, 207492309531, 1341251373168, 8669985167601, 56043665125110, 362271946253463, 2341762672896108, 15137391876137037, 97849639275510546, 632510011281474387
Offset: 0
Sequences with g.f. of the form 1/(1 - 6*x - k*x^2):
A106392 (k=-10),
A027471 (k=-9),
A006516 (k=-8),
A081179 (k=-7),
A030192 (k=-6),
A003463 (k=-5),
A084326 (k=-4),
A138395 (k=-3),
A154244 (k=-2),
A001109 (k=-1),
A000400 (k=0),
A005668 (k=1),
A135030 (k=2), this sequence (k=3),
A135032 (k=4),
A015551 (k=5),
A057089 (k=6),
A015552 (k=7),
A189800 (k=8),
A189801 (k=9),
A190005 (k=10),
A015553 (k=11).
-
[n le 2 select 6^(n-1) else 6*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
-
a:= n-> (<<0|1>, <3|6>>^n. <<1,6>>)[1,1]:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 17 2011
-
Join[{a=1,b=6},Table[c=6*b+3*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6,3}, {1,6}, 41] (* G. C. Greubel, Oct 10 2022 *)
-
my(x='x+O('x^30)); Vec(1/(1-6*x-3*x^2)) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,6,-3) for n in range(1, 31)] # Zerinvary Lajos, Apr 24 2009
A087567
a(n) = (1/5)*Sum_{k=0..n} binomial(n,k)*Fibonacci(k)*5^k.
Original entry on oeis.org
1, 7, 68, 609, 5555, 50456, 458737, 4169823, 37904764, 344559985, 3132110411, 28471412592, 258809985953, 2352626740919, 21385776919540, 194400346514241, 1767132187070947, 16063531893267208, 146020234807218449, 1327348749622606095, 12065825708695393196
Offset: 0
-
LinearRecurrence[{7,19},{1,7},25] (* Paolo Xausa, Jan 07 2024 *)
-
[lucas_number1(n,7,-19) for n in range(1, 20)] # Zerinvary Lajos, Apr 29 2009
A087603
a(n) = (1/8)*Sum_{k=0..n} binomial(n,k)*Fibonacci(k)*8^k.
Original entry on oeis.org
1, 10, 155, 2100, 29525, 410750, 5731375, 79905000, 1114275625, 15537531250, 216660471875, 3021168937500, 42128015328125, 587444444843750, 8191485291484375, 114224297381250000, 1592774664844140625, 22210083004410156250, 309703436610529296875
Offset: 0
-
LinearRecurrence[{10,55},{1,10},30] (* Harvey P. Dale, Nov 26 2014 *)
-
Vec(1/(1-10*x-55*x^2) + O(x^50)) \\ Colin Barker, Mar 30 2016
A087579
a(n) = (1/6)*Sum_{k=0..n} binomial(n,k)*Fibonacci(k)*6^k.
Original entry on oeis.org
1, 8, 93, 976, 10505, 112344, 1203397, 12885152, 137979729, 1477507240, 15821470061, 169419470448, 1814178395353, 19426591805816, 208023907911765, 2227562425662784, 23853192734743457, 255424852222168392, 2735141407084907389, 29288451971122142480
Offset: 0
A087584
a(n) = (1/7)*Sum_{k=0..n} binomial(n,k)*Fibonacci(k)*7^k.
Original entry on oeis.org
1, 9, 122, 1467, 18205, 223992, 2762333, 34044669, 419657674, 5172750495, 63760719089, 785929242096, 9687552661513, 119411072879553, 1471889315038010, 18142857823403763, 223633182327192277, 2756555811704284776, 33977962780753446341, 418820453306656692885
Offset: 0
A091929
Expansion of (1-6x)/(1-6x-11x^2).
Original entry on oeis.org
1, 0, 11, 66, 517, 3828, 28655, 214038, 1599433, 11951016, 89299859, 667260330, 4985860429, 37255026204, 278374621943, 2080053019902, 15542438960785, 116135216983632, 867778130470427, 6484156169642514, 48450496453029781
Offset: 0
- S. Roman, Introduction to Coding and Information Theory, Springer-Verlag, 1996, p. 224
-
CoefficientList[Series[(1-6x)/(1-6x-11x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,11},{1,0},30] (* Harvey P. Dale, Apr 25 2018 *)
A225799
a(n) = Sum_{k=0..n} binomial(n,k) * 10^(n-k) * Fibonacci(n+k).
Original entry on oeis.org
0, 11, 143, 3058, 55341, 1052755, 19717984, 371084087, 6973353387, 131101759514, 2464418392865, 46327530894271, 870879506447808, 16371134451297043, 307750614069672631, 5785211638097121890, 108752568228856901349, 2044371455527726003547, 38430858858805840293152
Offset: 0
-
Table[Sum[Binomial[n, k]*10^(n - k)*Fibonacci[n + k], {k, 0, n}], {n, 0, 25}]
FullSimplify[Table[((13 + 11 Sqrt[5])^n - (13 - 11 Sqrt[5])^n)/(2^n Sqrt[5]), {n, 0, 25}]]
LinearRecurrence[{13,109},{0,11},30] (* Harvey P. Dale, Jul 31 2018 *)
Showing 1-7 of 7 results.
Comments