cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A002961 Numbers k such that k and k+1 have same sum of divisors.

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 84134, 92685, 109214, 111506, 116937, 122073, 138237, 147454, 161001, 162602, 166934
Offset: 1

Views

Author

Keywords

Comments

For the values of n < 2*10^10 in this sequence, sigma(n)/n is between 1.5 and 2.25. - T. D. Noe, Sep 17 2007
Whether this sequence is infinite is an unsolved problem, as noted in many of the references and links. - Franklin T. Adams-Watters, Jan 25 2010
144806446575 is the first term for which sigma(n)/n > 2.25. All n < 10^12 have sigma(n)/n > 3/2. - T. D. Noe, Feb 18 2010
A053222(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2011
Numbers n such that n + 1 = antisigma(n+1) - antisigma(n), where antisigma(n) = A024816(n) = the sum of the non-divisors of n that are between 1 and n. Example for n = 14: 15 = antisigma(15) - antisigma(14) = 96 - 81. - Jaroslav Krizek, Nov 10 2013
Up to 10^13, the value of the sigma(n)/n varies between 1417728000/945151999 (attained for n = 2835455997) and 2913242112/1263730145 (for n = 5174974943775). - Giovanni Resta, Feb 26 2014
Also numbers n such that A242962(n) = A242962(n+1), with A242962(n) = T(n) mod antisigma(n), where T(n) = A000217(n) is the n-th triangular number and antisigma(n) = A024816(n) is the sum of numbers less than n which do not divide n. - Jaroslav Krizek, May 29 2014
Guy and Shanks construct 5559060136088313 as a term of this sequence. - Michel Marcus, Dec 29 2014
Note that in all cases, n and n+1 are composite. - Zak Seidov, May 03 2016

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • R. K. Guy, Unsolved Problems in Theory of Numbers, Sect. B13.
  • W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a002961 n = a002961_list !! (n-1)
    a002961_list = map (+ 1) $ elemIndices 0 a053222_list
    -- Reinhard Zumkeller, Dec 28 2011
  • Mathematica
    Flatten[Position[Partition[DivisorSigma[1,Range[170000]],2,1],{x_,x_}]] (* Harvey P. Dale, Aug 08 2011 *)
    SequencePosition[DivisorSigma[1,Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2018 *)
  • PARI
    t1=sigma(1);for(n=2,1e6,t2=sigma(n);if(t2==t1,print1(n-1", "));t1=t2) \\ Charles R Greathouse IV, Jul 15 2011
    

Formula

Sum_{n>=1} 1/a(n) is in the interval (0.080958, 610837) (Bayless and Kinlaw, 2015). - Amiram Eldar, Oct 15 2020

Extensions

More terms from Jud McCranie, Oct 15 1997

A007373 Numbers k such that sigma(k+2) = sigma(k).

Original entry on oeis.org

33, 54, 284, 366, 834, 848, 918, 1240, 1504, 2910, 2913, 3304, 4148, 4187, 6110, 6902, 7169, 7912, 9359, 10250, 10540, 12565, 15085, 17272, 17814, 19004, 19688, 21410, 21461, 24881, 25019, 26609, 28124, 30592, 30788, 31484, 38210, 38982, 39786, 40310, 45354
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that antisigma(k+2) - antisigma(k) = 2*k + 3, where antisigma(m) = A024816(m) = sum of nondivisors of m. - Jaroslav Krizek, Mar 17 2013

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 33, pp 12, Ellipses, Paris 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[DivisorSigma[1,Range[300000]],3,1], {x_, , x}]] (* Harvey P. Dale, Aug 08 2011 *)
    SequencePosition[DivisorSigma[1,Range[300000]],{x_,,x}][[All,1]] (* Harvey P. Dale, Nov 17 2022 *)
  • PARI
    je=[]; for(n=1,10^5,a=sigma(n); b=sigma(n+2); if(a==b,je=concat(je,n))); je

Extensions

More terms from Jason Earls, Jul 20 2001

A015861 Numbers k such that sigma(k) = sigma(k+3).

Original entry on oeis.org

382, 8922, 11935, 31815, 32442, 61982, 123795, 145915, 186615, 271215, 442362, 554715, 560382, 580635, 964535, 1191575, 1243375, 1369302, 1539942, 1642795, 2616702, 3141215, 3299062, 3556035, 3716895, 4201015, 5148294
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[DivisorSigma[1,Range[5200000]],4,1],{x_, y_, z_, x_}]] (* Harvey P. Dale, Aug 08 2011 *)
    Select[Range[6000000], DivisorSigma[1, #]==DivisorSigma[1, # + 3] &] (* Vincenzo Librandi, Mar 10 2014 *)
    SequencePosition[DivisorSigma[1,Range[5150000]],{x_,,,x_}][[;;,1]] (* Harvey P. Dale, Dec 01 2024 *)
  • PARI
    is(n)=sigma(n)==sigma(n+3) \\ Charles R Greathouse IV, Mar 09 2014

A015865 Numbers k such that sigma(k) = sigma(k+5).

Original entry on oeis.org

6, 46, 1030, 2673, 4738, 4785, 10437, 14025, 20038, 20326, 23914, 28702, 31101, 39273, 39669, 41349, 41554, 44709, 46366, 55918, 68638, 74205, 93682, 94365, 96790, 103678, 115245, 115642, 124785, 169990, 182830, 185073, 207118, 214090
Offset: 1

Views

Author

Keywords

Comments

Using the method proposed by Guy and Shanks to construct solutions of sigma(k) = sigma(k + 1), it is possible to search for large terms of this sequence: If q = 3^(m+1) + 8 and p = (3^m*q - 5)/2 are primes, then 2*p is a term. This occurs for m = 0, 1 and 4, giving the terms 6, 46 and 20326. If q = 3^(m+1) - 22 and p = (3^m*q + 5)/2 are primes, then 3^m*q is a term. This occurs for m = 45 giving the term 26183890704263137277609197558886063678754201. In both cases there are no other solutions for m <= 10^4. - Amiram Eldar, May 29 2020

Crossrefs

Programs

Extensions

Corrected and extended by T. D. Noe, Oct 31 2006

A015863 Numbers k such that sigma(k) = sigma(k+4).

Original entry on oeis.org

51, 66, 115, 220, 319, 1003, 2585, 4024, 4183, 4195, 5720, 5826, 5959, 8004, 8374, 11659, 12367, 12561, 13581, 14338, 15365, 16116, 17840, 18718, 20541, 25130, 29393, 30170, 32665, 36516, 39913, 40660, 42423, 42922, 47841, 49762
Offset: 1

Views

Author

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 51, p. 19, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    Select[Range[60000], DivisorSigma[1, #]==DivisorSigma[1, # + 4] &] (* Vincenzo Librandi, Mar 10 2014 *)
    SequencePosition[DivisorSigma[1,Range[50000]],{x_,,,_,x_}][[;;,1]] (* Harvey P. Dale, Feb 13 2025 *)
  • PARI
    is(n)=sigma(n)==sigma(n+4) \\ Charles R Greathouse IV, Mar 09 2014

A015866 Numbers k such that sigma(k) = sigma(k+6).

Original entry on oeis.org

20, 155, 182, 184, 203, 264, 621, 650, 702, 852, 893, 944, 1343, 1357, 2024, 2544, 2990, 4130, 4183, 4450, 5428, 5835, 6149, 6313, 6572, 8177, 8695, 11208, 11333, 11991, 12444, 12561, 12859, 13595, 14857, 16815, 18203, 18330, 18430, 19089
Offset: 1

Views

Author

Keywords

Comments

Up to 10^13, sigma(k-6) = sigma(k) = sigma(k+6) only for k = 33227, 604453 and 4223105512993. - Giovanni Resta, Mar 03 2014

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 20, pp 7, Ellipses, Paris 2008.

Crossrefs

Programs

A015876 Numbers k such that sigma(k) = sigma(k+8).

Original entry on oeis.org

15, 69, 87, 102, 132, 175, 230, 638, 689, 1127, 1349, 1392, 2006, 5170, 6680, 8366, 8390, 11652, 11918, 12128, 16748, 19511, 19829, 23318, 24597, 24734, 25122, 27162, 28676, 30730, 32864, 37391, 37436, 37901, 41082, 45925, 47487
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015877 Numbers k such that sigma(k) = sigma(k+9).

Original entry on oeis.org

14, 16, 46, 446, 1146, 26766, 35805, 143605, 179086, 185946, 437745, 1187725, 1194646, 1327086, 1746946, 2201806, 2893605, 3003385, 3574725, 3730125, 4053586, 4928385, 5715325, 6220305, 7507946, 9423645, 9897186
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015880 Numbers k such that sigma(k) = sigma(k+10).

Original entry on oeis.org

21, 174, 270, 517, 572, 913, 992, 1002, 1420, 1633, 1830, 2622, 2958, 4170, 4747, 5539, 7520, 7544, 7729, 10184, 10783, 14863, 16165, 16520, 19837, 20935, 21584, 23161, 26840, 28544, 29737, 31453, 34510, 35571, 35611, 35845, 39560
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015881 Numbers k such that sigma(k) = sigma(k+11).

Original entry on oeis.org

28, 154, 466, 874, 958, 1054, 2266, 2878, 11505, 12754, 14674, 17974, 21154, 21778, 29223, 29535, 31725, 32714, 39658, 43186, 48004, 52018, 62338, 70198, 126795, 132783, 163251, 164818, 207603, 212938, 221595, 272685, 274527
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Showing 1-10 of 15 results. Next