A225466
Triangle read by rows, 3^k*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 21, 9, 8, 117, 135, 27, 16, 609, 1431, 702, 81, 32, 3093, 13275, 12015, 3240, 243, 64, 15561, 115479, 171990, 81405, 13851, 729, 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187, 256, 390369, 7998111, 27533142, 29893941, 13121514, 2561706
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6, 7]
[0] 1,
[1] 2, 3,
[2] 4, 21, 9,
[3] 8, 117, 135, 27,
[4] 16, 609, 1431, 702, 81,
[5] 32, 3093, 13275, 12015, 3240, 243,
[6] 64, 15561, 115479, 171990, 81405, 13851, 729,
[7] 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see the Maple program): T(4, 2) = 3*T(3, 1) + (3*2+2)*T(3, 2) = 3*117 + 8*135 = 1431.
Boas-Buck recurrence for column k = 2, and n = 4: T(4,2) = (1/2)*(2*(4 + 3*2)*T(3, 2) + 2*6*(-3)^2*Bernoulli(2)*T(2, 2)) = (1/2)*(20*135 + 12*9*(1/6)*9) = 1431. (End)
- Vincenzo Librandi, Rows n = 0..50, flattened
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Peter Luschny, Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv:1308.0169 [math.CO], 2013, p. 12.
Cf.
A000079,
A000244,
A005057,
A016127,
A016297,
A025999,
A006232/
A006233,
A225117,
A225472,
A225468,
A282629,
A284862/
A284863,
A284864,
A284865.
-
SF_SS := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:
seq(print(seq(SF_SS(n, k, 3), k=0..n)), n=0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
T(n, k) = sum(j=0, k, binomial(k, j)*(-1)^(j - k)*(2 + 3*j)^n/k!);
for(n=0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 10 2017
-
from sympy import binomial, factorial
def T(n, k): return sum(binomial(k, j)*(-1)**(j - k)*(2 + 3*j)**n//factorial(k) for j in range(k + 1))
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 10 2017
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m)
def SF_SS(n, k, m):
return add(EulerianNumber(n,j,m)*binomial(j,n-k) for j in (0..n))/ factorial(k)
def A225466(n): return SF_SS(n, k, 3)
A225468
Triangle read by rows, S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 1, 4, 7, 1, 8, 39, 15, 1, 16, 203, 159, 26, 1, 32, 1031, 1475, 445, 40, 1, 64, 5187, 12831, 6370, 1005, 57, 1, 128, 25999, 107835, 82901, 20440, 1974, 77, 1, 256, 130123, 888679, 1019746, 369061, 53998, 3514, 100, 1
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 2, 1,
[2] 4, 7, 1,
[3] 8, 39, 15, 1,
[4] 16, 203, 159, 26, 1,
[5] 32, 1031, 1475, 445, 40, 1,
[6] 64, 5187, 12831, 6370, 1005, 57, 1.
Connection constants: Row 3: [8, 39, 15, 1] so
x^3 = 8 + 39*(x - 2) + 15*(x - 2)*(x - 5) + (x - 2)*(x - 5)*(x - 8). - _Peter Bala_, Jan 27 2015
- Vincenzo Librandi, Rows n = 0..50, flattened
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
-
SF_S := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end:
seq(print(seq(SF_S(n, k, 3), k=0..n)), n = 0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m)
def SF_S(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/ (factorial(k)*m^k)
for n in (0..6): [SF_S(n, k, 3) for k in (0..n)]
A225472
Triangle read by rows, k!*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 3, 4, 21, 18, 8, 117, 270, 162, 16, 609, 2862, 4212, 1944, 32, 3093, 26550, 72090, 77760, 29160, 64, 15561, 230958, 1031940, 1953720, 1662120, 524880, 128, 77997, 1941030, 13429962, 39735360, 57561840, 40415760, 11022480, 256, 390369, 15996222, 165198852
Offset: 0
[n\k][0, 1, 2, 3, 4, 5, 6 ]
[0] 1,
[1] 2, 3,
[2] 4, 21, 18,
[3] 8, 117, 270, 162,
[4] 16, 609, 2862, 4212, 1944,
[5] 32, 3093, 26550, 72090, 77760, 29160,
[6] 64, 15561, 230958, 1031940, 1953720, 1662120, 524880.
-
SF_SO := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*k*SF_SO(n-1, k-1, m) + (m*(k+1)-1)*SF_SO(n-1, k, m) end:
seq(print(seq(SF_SO(n, k, 3), k=0..n)), n = 0..5);
-
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]; Table[ SFSO[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+ (m*k+1)*EulerianNumber(n-1, k, m)
def SF_SO(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))
for n in (0..6): [SF_SO(n, k, 3) for k in (0..n)]
A025999
Expansion of g.f. 1/((1-2*x) * (1-5*x) * (1-8*x) * (1-11*x)).
Original entry on oeis.org
1, 26, 445, 6370, 82901, 1019746, 12105885, 140404290, 1603014501, 18104952866, 202945103725, 2262802497410, 25134485221301, 278430633932386, 3078357517755965, 33986947913921730, 374856803115095301, 4131429114327366306, 45509760855920174605, 501119725990818613250
Offset: 0
-
CoefficientList[Series[1/((1-2x)(1-5x)(1-8x)(1-11x)),{x,0,20}],x] (* or *) LinearRecurrence[{26,-231,806,-880},{1,26,445,6370},20] (* Harvey P. Dale, May 24 2014 *)
A016307
Expansion of g.f. 1/((1-2*x)*(1-6*x)*(1-10*x)).
Original entry on oeis.org
1, 18, 232, 2640, 28336, 295008, 3020032, 30620160, 308720896, 3102325248, 31113951232, 311683706880, 3120102240256, 31220613439488, 312323680632832, 3123942083788800, 31243652502716416, 312461915016265728, 3124771490097528832, 31248628940585041920
Offset: 0
-
[(2^n-18*6^n+25*10^n)/8: n in [0..20]]; // Vincenzo Librandi, Sep 01 2011
-
CoefficientList[Series[1/((1-2x)(1-6x)(1-10x)),{x,0,30}],x] (* or *) LinearRecurrence[{18,-92,120},{1,18,232},30] (* Harvey P. Dale, Nov 06 2019 *)
A019618
Expansion of 1/((1-4*x)*(1-7*x)*(1-10*x)).
Original entry on oeis.org
1, 21, 303, 3745, 42711, 464961, 4918663, 51086385, 524227671, 5336085601, 54018566823, 544793838225, 5480212349431, 55028108373441, 551863246323783, 5529708675105265, 55374624529091991, 554289026917064481, 5546689809273133543, 55493495148326663505, 555121131971945559351
Offset: 0
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-7*x)*(1-10*x)))); // Vincenzo Librandi, Jul 03 2013
-
I:=[1, 21, 303]; [n le 3 select I[n] else 21*Self(n-1)-138*Self(n-2)+280*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
-
CoefficientList[Series[1 / ((1 - 4 x) (1 - 7 x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
LinearRecurrence[{21,-138,280},{1,21,303},30] (* Harvey P. Dale, Mar 09 2017 *)
-
x='x+O('x^30); Vec(1/((1-4*x)*(1-7*x)*(1-10*x))) \\ G. C. Greubel, Aug 24 2018
A020447
Expansion of 1/((1-5*x) * (1-8*x) * (1-11*x)).
Original entry on oeis.org
1, 24, 393, 5480, 70161, 853944, 10066393, 116192520, 1322205921, 14898923864, 166735197993, 1856912289960, 20608880226481, 228161663489784, 2521496249891193, 27830232878409800, 306882907287251841, 3381715508097175704, 37246902627265441993, 410100204278978264040
Offset: 0
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-5*x)*(1-8*x)*(1-11*x)))); // Vincenzo Librandi, Jul 03 2013
-
I:=[1, 24, 393]; [n le 3 select I[n] else 24*Self(n-1)-183*Self(n-2)+440*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 03 2013
-
CoefficientList[Series[1 / ((1 - 5 x) (1 - 8 x) (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 03 2013 *)
LinearRecurrence[{24,-183,440},{1,24,393},30] (* Harvey P. Dale, Jun 20 2015 *)
A025992
Expansion of 1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)).
Original entry on oeis.org
1, 22, 313, 3666, 38493, 377286, 3529681, 31947322, 282198565, 2447183310, 20920905369, 176852694018, 1481626607917, 12322682753494, 101879323774177, 838170485025354, 6867569457133749, 56077266261254238
Offset: 0
Cf.
A000079,
A000351,
A000420,
A001018,
A016127,
A016130,
A016131,
A016161,
A016162,
A016177,
A016296,
A016297,
A016311,
A019928.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/((1-2*x)*(1-5*x)*(1-7*x)*(1-8*x)))); // Bruno Berselli, May 09 2013
-
CoefficientList[Series[1/((1-2x)(1-5x)(1-7x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[ {22,-171,542,-560},{1,22,313,3666},30] (* Harvey P. Dale, Jan 29 2013 *)
-
a(n) = n+=3; (5*8^n-9*7^n+5*5^n-2^n)/90 \\ Charles R Greathouse IV, Oct 03 2016
-
def A025992(n): return (5*pow(8,n+3)-9*pow(7,n+3)+pow(5,n+4)-pow(2,n+3))//90
print([A025992(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024
Showing 1-8 of 8 results.
Comments