cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016957 a(n) = 6*n + 4.

Original entry on oeis.org

4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 322, 328
Offset: 0

Views

Author

Keywords

Comments

Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1) + 2*m*(n-1) - 2 for m > 1 and n > 1. - Sergey Kitaev, Nov 12 2004
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
4th transversal numbers (or 4-transversal numbers): Numbers of the 4th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 4th column in the square array A057145. - Omar E. Pol, May 02 2008
a(n) is the maximum number such that there exists an edge coloring of the complete graph with a(n) vertices using n colors and every subgraph whose edges are of the same color (subgraph induced by edge color) is planar. - Srikanth K S, Dec 18 2010
Also numbers having two antecedents in the Collatz problem: 12*n+8 and 2*n+1 (respectively A017617(n) and A005408(n)). - Michel Lagneau, Dec 28 2012
a(n) = 6n+4 has three undirected edges e1 = (3n+2, 6n+4), e2 = (6n+4, 12n+8) and e3 = (2n+1, 6n+4) in the Collatz graph of A006370. - Heinz Ebert, Mar 16 2021
Conjecture: this sequence contains some but not all, even numbers with odd abundance A088827. They appear in this sequence at indices A186424(n) - 1. - John Tyler Rascoe, Jul 09 2022

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A016789(n)*2. - Omar E. Pol, May 02 2008
A157176(a(n)) = A067412(n+1). - Reinhard Zumkeller, Feb 24 2009
a(n) = sqrt(A016958(n)). - Zerinvary Lajos, Jun 30 2009
a(n) = 2*(6*n+1) - a(n-1) (with a(0)=4). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((sqrt(36*n^2 - 36*n + 1) + 6*n + 1)/2). - Srikanth K S, Dec 18 2010
From Colin Barker, Jan 30 2012: (Start)
G.f.: 2*(2+x)/(1-2*x+x^2).
a(n) = 2*a(n-1) - a(n-2). (End)
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
a(n) = 3 * A005408(n) + 1. - Fred Daniel Kline, Oct 24 2015
a(n) = A057145(n+2,4). - R. J. Mathar, Jul 28 2016
a(4*n+2) = 4 * a(n). - Zhandos Mambetaliyev, Sep 22 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 - log(2)/6. - Amiram Eldar, Dec 10 2021
E.g.f.: 2*exp(x)*(2 + 3*x). - Stefano Spezia, May 29 2024