A016957 a(n) = 6*n + 4.
4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 322, 328
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012
Links
- Heinz Ebert, A Graph Theoretical Approach to the Collatz Problem, arXiv:1905.07575 [math.GM], 2019-2020.
- Tanya Khovanova, Recursive Sequences.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 4 (2004), Article A21, 20pp.
- Index to sequences related to polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a016957 = (+ 4) . (* 6) -- Reinhard Zumkeller, Jul 05 2013
-
Maple
seq(6*n+4, n = 0 .. 50) # Matt C. Anderson, Jun 09 2017
-
Mathematica
Range[4, 1000, 6] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *)
-
Maxima
makelist(6*n+4, n, 0, 30); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n)=6*n+4 \\ Charles R Greathouse IV, Jul 10 2016
Formula
A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A016789(n)*2. - Omar E. Pol, May 02 2008
a(n) = sqrt(A016958(n)). - Zerinvary Lajos, Jun 30 2009
a(n) = 2*(6*n+1) - a(n-1) (with a(0)=4). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((sqrt(36*n^2 - 36*n + 1) + 6*n + 1)/2). - Srikanth K S, Dec 18 2010
From Colin Barker, Jan 30 2012: (Start)
G.f.: 2*(2+x)/(1-2*x+x^2).
a(n) = 2*a(n-1) - a(n-2). (End)
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
a(n) = 3 * A005408(n) + 1. - Fred Daniel Kline, Oct 24 2015
a(n) = A057145(n+2,4). - R. J. Mathar, Jul 28 2016
a(4*n+2) = 4 * a(n). - Zhandos Mambetaliyev, Sep 22 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 - log(2)/6. - Amiram Eldar, Dec 10 2021
E.g.f.: 2*exp(x)*(2 + 3*x). - Stefano Spezia, May 29 2024
Comments