cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A254963 a(n) = n*(11*n + 3)/2.

Original entry on oeis.org

0, 7, 25, 54, 94, 145, 207, 280, 364, 459, 565, 682, 810, 949, 1099, 1260, 1432, 1615, 1809, 2014, 2230, 2457, 2695, 2944, 3204, 3475, 3757, 4050, 4354, 4669, 4995, 5332, 5680, 6039, 6409, 6790, 7182, 7585, 7999, 8424, 8860, 9307, 9765, 10234, 10714, 11205, 11707
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2015

Keywords

Comments

This sequence provides the first differences of A254407 and the partial sums of A017473.
Also:
a(n) - n = A022269(n);
a(n) + n = n*(11*n+5)/2: 0, 8, 27, 57, 98, 150, 213, 287, ...;
a(n) - 2*n = A022268(n);
a(n) + 2*n = n*(11*n+7)/2: 0, 9, 29, 60, 102, 155, 219, 294, ...;
a(n) - 3*n = n*(11*n-3)/2: 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) + 3*n = A211013(n);
a(n) - 4*n = A226492(n);
a(n) + 4*n = A152740(n);
a(n) - 5*n = A180223(n);
a(n) + 5*n = n*(11*n+13)/2: 0, 12, 35, 69, 114, 170, 237, 315, ...;
a(n) - 6*n = A051865(n);
a(n) + 6*n = n*(11*n+15)/2: 0, 13, 37, 72, 118, 175, 243, 322, ...;
a(n) - 7*n = A152740(n-1) with A152740(-1) = 0;
a(n) + 7*n = n*(11*n+17)/2: 0, 14, 39, 75, 122, 180, 249, 329, ...;
a(n) - n*(n-1)/2 = A168668(n);
a(n) + n*(n-1)/2 = A049453(n);
a(n) - n*(n+1)/2 = A202803(n);
a(n) + n*(n+1)/2 = A033580(n).

Crossrefs

Cf. A008729 and A218530 (seventh column); A017473, A254407.
Cf. similar sequences of the type 4*n^2 + k*n*(n+1)/2: A055999 (k=-7, n>6), A028552 (k=-6, n>2), A095794 (k=-5, n>1), A046092 (k=-4, n>0), A000566 (k=-3), A049450 (k=-2), A022264 (k=-1), A016742 (k=0), A022267 (k=1), A202803 (k=2), this sequence (k=3), A033580 (k=4).
Cf. A069125: (2*n+1)^2 + 3*n*(n+1)/2; A147875: n^2 + 3*n*(n+1)/2.

Programs

  • Magma
    [n*(11*n+3)/2: n in [0..50]];
    
  • Mathematica
    Table[n (11 n + 3)/2, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{0,7,25},50] (* Harvey P. Dale, Mar 25 2018 *)
  • Maxima
    makelist(n*(11*n+3)/2, n, 0, 50);
  • PARI
    vector(50, n, n--; n*(11*n+3)/2)
    
  • Sage
    [n*(11*n+3)/2 for n in (0..50)]
    

Formula

G.f.: x*(7 + 4*x)/(1 - x)^3.
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(14 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A017474 a(n) = (11*n + 7)^2.

Original entry on oeis.org

49, 324, 841, 1600, 2601, 3844, 5329, 7056, 9025, 11236, 13689, 16384, 19321, 22500, 25921, 29584, 33489, 37636, 42025, 46656, 51529, 56644, 62001, 67600, 73441, 79524, 85849, 92416, 99225, 106276, 113569, 121104, 128881, 136900, 145161, 153664, 162409, 171396, 180625, 190096, 199809
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), this sequence (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (49 +177*x +16*x^2)/(1-x)^3.
E.g.f.: (49 +275*x +121*x^2)*exp(x). (End)

A017475 a(n) = (11*n + 7)^3.

Original entry on oeis.org

343, 5832, 24389, 64000, 132651, 238328, 389017, 592704, 857375, 1191016, 1601613, 2097152, 2685619, 3375000, 4173281, 5088448, 6128487, 7301384, 8615125, 10077696, 11697083, 13481272, 15438249, 17576000, 19902511, 22425768, 25153757, 28094464, 31255875, 34645976, 38272753, 42144192
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), this sequence (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

  • GAP
    List([0..40], n-> (11*n+7)^3); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+7)^3: n in [0..40]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    seq((11*n+7)^3, n=0..40); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11*Range[0,40]+7)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{343,5832, 24389,64000}, 40] (* Harvey P. Dale, Oct 18 2014 *)
  • Maxima
    makelist((11*n+7)^3, n,0,40); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    a(n) = (11*n+7)^3; \\ Altug Alkan, Sep 08 2018
    
  • Sage
    [(11*n+7)^3 for n in (0..40)] # G. C. Greubel, Sep 19 2019
    

Formula

G.f.: (343 + 4460*x + 3119*x^2 + 64*x^3)/(1-x)^4. - R. J. Mathar, Jun 24 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=343, a(1)=5832, a(2)=24389, a(3)=64000. - Harvey P. Dale, Oct 18 2014
E.g.f.: (343 +5489*x +6534*x^2 +1331*x^3)*exp(x). - G. C. Greubel, Sep 19 2019

A017476 a(n) = (11*n + 7)^4.

Original entry on oeis.org

2401, 104976, 707281, 2560000, 6765201, 14776336, 28398241, 49787136, 81450625, 126247696, 187388721, 268435456, 373301041, 506250000, 671898241, 875213056, 1121513121, 1416468496, 1766100625, 2176782336, 2655237841, 3208542736, 3844124001, 4569760000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), this sequence (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

  • GAP
    List([0..30], n-> (11*n+7)^4); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+7)^4: n in [0..30]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    seq((11*n+7)^4, n=0..30); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11*Range[0,30]+7)^4 (* or *) LinearRecurrence[{5,-10,10,-5,1}, {2401, 104976,707281,2560000,6765201}, 30] (* Harvey P. Dale, Oct 21 2015 *)
  • PARI
    vector(30, n, (11*n-4)^4) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+7)^4 for n in (0..30)] # G. C. Greubel, Sep 19 2019
    

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=2401, a(1)=104976, a(2)=707281, a(3)=2560000, a(4)=6765201. - Harvey P. Dale, Oct 21 2015
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (2401 +92971*x +206411*x^2 +49345*x^3 +256*x^4)/(1-x)^5.
E.g.f.: (2401 +102575*x +249865*x^2 +125114*x^3 +14641 x^4)*exp(x). (End)

A017477 a(n) = (11*n + 7)^5.

Original entry on oeis.org

16807, 1889568, 20511149, 102400000, 345025251, 916132832, 2073071593, 4182119424, 7737809375, 13382255776, 21924480357, 34359738368, 51888844699, 75937500000, 108175616801, 150536645632, 205236901143
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), this sequence (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

  • GAP
    List([0..30], n-> (11*n+7)^5); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+7)^5: n in [0..30]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    seq((11*n+7)^5, n=0..30); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11 * Range[0, 30] + 7)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {16807, 1889568, 20511149, 102400000, 345025251, 916132832}, 30] (* Harvey P. Dale, Jan 16 2013 *)
  • PARI
    vector(30, n, (11*n-4)^5) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+7)^5 for n in (0..30)] # G. C. Greubel, Sep 19 2019
    

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), with a(0) = 16807, a(1) = 1889568, a(2) = 20511149, a(3) = 102400000, a(4) = 345025251, a(5) = 916132832. - Harvey P. Dale, Jan 16 2013
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (16807 +1788726*x +9425846*x^2 +7340486*x^3 +753231*x^4 +1024*x^5 )/(1-x)^6.
E.g.f.: (16807 +1872761*x +8374410*x^2 +7753075*x^3 +2122945*x^4 +161051 *x^5)*exp(x). (End)

A017478 a(n) = (11*n + 7)^6.

Original entry on oeis.org

117649, 34012224, 594823321, 4096000000, 17596287801, 56800235584, 151334226289, 351298031616, 735091890625, 1418519112256, 2565164201769, 4398046511104, 7212549413161, 11390625000000, 17416274304961, 25892303048704, 37558352909169, 53310208315456, 74220378765625
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), this sequence (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (117649 +33188681*x +359208382*x^2 +642375742*x^3 +229267417*x^4 +11361953*x^5 +4096*x^6)/(1-x)^7.
E.g.f.: (117649 +33894575*x +263458261*x^2 +402241510*x^3 +193554020*x^4 +33337557*x^5 +1771561*x^6)*exp(x). (End)

A017479 a(n) = (11*n + 7)^7.

Original entry on oeis.org

823543, 612220032, 17249876309, 163840000000, 897410677851, 3521614606208, 11047398519097, 29509034655744, 69833729609375, 150363025899136, 300124211606973, 562949953421312, 1002544368429379, 1708593750000000, 2804020163098721, 4453476124377088, 6873178582377927
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), this sequence (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (823543 +605631688*x +12375175257*x^2 +42937032016*x^3 +35460540721 *x^4 +6665393928*x^5 +170728303*x^6 +16384*x^7)/(1-x)^8.
E.g.f.: (823543 +611396489*x +8013129894*x^2 +18987701271*x^3 + 14295911630*x^4 +4196022754*x^5 +496037080*x^6 +19487171*x^7)*exp(x). (End)

A017480 a(n) = (11*n + 7)^8.

Original entry on oeis.org

5764801, 11019960576, 500246412961, 6553600000000, 45767944570401, 218340105584896, 806460091894081, 2478758911082496, 6634204312890625, 15938480745308416, 35114532758015841, 72057594037927936, 139353667211683681, 256289062500000000, 451447246258894081
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), this sequence (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+7)^8); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+7)^8: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    seq((11*n+7)^8, n=0..20); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11*Range[0,20]+7)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36, -9,1}, {5764801,11019960576, 500246412961,6553600000000, 45767944570401, 218340105584896,806460091894081,2478758911082496,6634204312890625}, 20] (* Harvey P. Dale, Mar 30 2016 *)
  • PARI
    vector(20, n, (11*n-4)^8) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+7)^8 for n in (0..20)] # G. C. Greubel, Sep 19 2019
    

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (5764801 +10968077367*x +401274300613*x^2 +2447616620803*x^3 + 3869465113539*x^4 +1725294430213*x^5 +185763408247*x^6 +2562300801*x^7 + 65536*x^8)/(1-x)^9.
E.g.f.: (5764801 +11014195775*x +239106128305*x^2 +847652479674*x^3 + 937956207111*x^4 +417408438678*x^5 +82366957134*x^6 +7093330244*x^7 + 214358881*x^8)*exp(x). (End)

A017481 a(n) = (11*n + 7)^9.

Original entry on oeis.org

40353607, 198359290368, 14507145975869, 262144000000000, 2334165173090451, 13537086546263552, 58871586708267913, 208215748530929664, 630249409724609375, 1689478959002692096, 4108400332687853397, 9223372036854775808, 19370159742424031659, 38443359375000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), this sequence (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (40353607 +197955754298*x +12525368984504*x^2 +125993865875030*x^3 +341752101417866*x^4 +292702580123078*x^5 +77396622719912*x^6 + 5045081881706*x^7 +38440737935*x^8 +262144*x^9)/(1-x)^10.
E.g.f.: (40353607 +198318936761*x +7055233874370*x^2 +36536266598315*x^3 +57159943839075*x^4 +36196841476257*x^5 +10604280696240*x^6 + 1501876268970*x^7 +98390726379*x^8 +2357947691*x^9)*exp(x). (End)

A017482 a(n) = (11*n + 7)^10.

Original entry on oeis.org

282475249, 3570467226624, 420707233300201, 10485760000000000, 119042423827613001, 839299365868340224, 4297625829703557649, 17490122876598091776, 59873693923837890625, 179084769654285362176, 480682838924478847449, 1180591620717411303424, 2692452204196940400601
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: A017473 (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), this sequence (m=10), A017483 (m=11), A017484 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+7)^10); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+7)^10: n in [0..10]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    seq((11*n+7)^10, n=0..20); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11*Range[21] -4)^10 (* G. C. Greubel, Sep 19 2019 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{282475249,3570467226624,420707233300201,10485760000000000,119042423827613001,839299365868340224,4297625829703557649,17490122876598091776,59873693923837890625,179084769654285362176,480682838924478847449},30] (* Harvey P. Dale, Apr 21 2020 *)
  • PARI
    vector(20, n, (11*n-4)^10) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+7)^10 for n in (0..20)] # G. C. Greubel, Sep 19 2019
    

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (282475249 +3567359998885*x +381447629946032*x^2 +6054309522746024* x^3 +26248927783563266*x^4 +38310933951284930*x^5 +19699677304461320*x^6 +3287461918700048*x^7 +134823999028181*x^8 +576638856289*x^9 +1048576* x^10)/(1-x)^11.
E.g.f.: (282475249 +3570184751375*x +206783290661101*x^2 + 1539058236550670*x^3 +3317056068374290*x^4 +2872963553757759*x^5 +1172277747064347*x^6 +242804694252120 x^7 +25867757964675*x^8 +1332240445415*x^9 +25937424601*x^10)*exp(x). (End)
Showing 1-10 of 14 results. Next