A017629 a(n) = 12*n + 9.
9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a017629 = (+ 9) . (* 12) -- Reinhard Zumkeller, Jul 05 2013
-
Mathematica
12*Range[0,200]+9 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *) LinearRecurrence[{2,-1},{9,21},60] (* Harvey P. Dale, Apr 14 2019 *)
-
PARI
a(n)=12*n+9 \\ Charles R Greathouse IV, Jul 10 2016
-
Sage
[i+9 for i in range(525) if gcd(i,12) == 12] # Zerinvary Lajos, May 21 2009
Formula
a(n) = 6*(4*n+1) - a(n-1) (with a(0)=9). - Vincenzo Librandi, Dec 17 2010
A089911(2*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
G.f.: (9 + 3*x)/(1 - x)^2. - Alejandro J. Becerra Jr., Jul 08 2020
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(3 + 4*x). - Stefano Spezia, Feb 25 2023
Comments