cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A017904 Expansion of 1/(1 - x^10 - x^11 - ...).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 65, 76, 89, 105, 125, 150, 181, 219, 265, 320, 385, 461, 550, 655, 780, 930, 1111, 1330, 1595, 1915, 2300, 2761, 3311, 3966, 4746, 5676
Offset: 0

Views

Author

Keywords

Comments

A Lamé sequence of higher order.
a(n) = number of compositions of n in which each part is >=10. - Milan Janjic, Jun 28 2010
a(n+19) equals the number of binary words of length n having at least 9 zeros between every two successive ones. - Milan Janjic, Feb 09 2015

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, A000930, A017898-A017903, and this one.

Programs

  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    a:= n-> (Matrix(10, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 0$8, 1][i] else 0 fi)^n)[10,10]: seq(a(n), n=0..80); # Alois P. Heinz, Aug 04 2008
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0,0; 0,0,0,0,1,0,0,0,0,0; 0,0,0,0,0,1,0,0,0,0; 0,0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,0,1; 1,0,0,0,0,0,0,0,0,1]^n)[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: (x-1)/(x-1+x^10). - Alois P. Heinz, Aug 04 2008
For positive integers n and k such that k <= n <= 10*k, and 9 divides n-k, define c(n,k) = binomial(k,(n-k)/9), and c(n,k) = 0, otherwise. Then, for n>= 1, a(n+10) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011

A141539 Square array A(n,k) of numbers of length n binary words with at least k "0" between any two "1" digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 5, 16, 1, 2, 3, 4, 8, 32, 1, 2, 3, 4, 6, 13, 64, 1, 2, 3, 4, 5, 9, 21, 128, 1, 2, 3, 4, 5, 7, 13, 34, 256, 1, 2, 3, 4, 5, 6, 10, 19, 55, 512, 1, 2, 3, 4, 5, 6, 8, 14, 28, 89, 1024, 1, 2, 3, 4, 5, 6, 7, 11, 19, 41, 144, 2048, 1, 2, 3, 4, 5, 6, 7, 9, 15, 26, 60, 233, 4096
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2008

Keywords

Comments

A(n,k+1) = A(n,k) - A143291(n,k).
From Gary W. Adamson, Dec 19 2009: (Start)
Alternative method generated from variants of an infinite lower triangle T(n) = A000012 = (1; 1,1; 1,1,1; ...) such that T(n) has the leftmost column shifted up n times. Then take lim_{k->infinity} T(n)^k, obtaining a left-shifted vector considered as rows of an array (deleting the first 1) as follows:
1, 2, 4, 8, 16, 32, 64, 128, 256, ... = powers of 2
1, 1, 2, 3, 5, 8, 13, 21, 34, ... = Fibonacci numbers
1, 1, 1, 2, 3, 4, 6, 9, 13, ... = A000930
1, 1, 1, 1, 2, 3, 4, 5, 7, ... = A003269
... with the next rows A003520, A005708, A005709, ... such that beginning with the Fibonacci row, the succession of rows are recursive sequences generated from a(n) = a(n-1) + a(n-2); a(n) = a(n-1) + a(n-3), ... a(n) = a(n-1) + a(n-k); k = 2,3,4,... Last, columns going up from the topmost 1 become rows of triangle A141539. (End)

Examples

			A(4,2) = 6, because 6 binary words of length 4 have at least 2 "0" between any two "1" digits: 0000, 0001, 0010, 0100, 1000, 1001.
Square array A(n,k) begins:
    1,  1,  1,  1,  1,  1,  1,  1, ...
    2,  2,  2,  2,  2,  2,  2,  2, ...
    4,  3,  3,  3,  3,  3,  3,  3, ...
    8,  5,  4,  4,  4,  4,  4,  4, ...
   16,  8,  6,  5,  5,  5,  5,  5, ...
   32, 13,  9,  7,  6,  6,  6,  6, ...
   64, 21, 13, 10,  8,  7,  7,  7, ...
  128, 34, 19, 14, 11,  9,  8,  8, ...
		

Crossrefs

Cf. column k=0: A000079, k=1: A000045(n+2), k=2: A000930(n+2), A068921, A078012(n+5), k=3: A003269(n+4), A017898(n+7), k=4: A003520(n+4), A017899(n+9), k=5: A005708(n+5), A017900(n+11), k=6: A005709(n+6), A017901(n+13), k=7: A005710(n+7), A017902(n+15), k=8: A005711(n+7), A017903(n+17), k=9: A017904(n+19), k=10: A017905(n+21), k=11: A017906(n+23), k=12: A017907(n+25), k=13: A017908(n+27), k=14: A017909(n+29).
Main diagonal gives A000027(n+1).
A(2n,n) gives A000217(n+1)
A(3n,n) gives A008778.
A(3n,2n) gives A034856(n+1).
A(2n,3n) gives A005408.
A(2^n-1,n) gives A376697.
See also A143291.

Programs

  • Maple
    A:= proc(n, k) option remember;
          if k=0 then 2^n
        elif n<=k and n>=0 then n+1
        elif n>0 then A(n-1, k) +A(n-k-1, k)
        else          A(n+1+k, k) -A(n+k, k)
          fi
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    a[n_, k_] := a[n, k] = Which[k == 0, 2^n, n <= k && n >= 0, n+1, n > 0, a[n-1, k] + a[n-k-1, k], True, a[n+1+k, k] - a[n+k, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

G.f. of column k: x^(-k)/(1-x-x^(k+1)).
A(n,k) = 2^n if k=0, otherwise A(n,k) = n+1 if n<=k, otherwise A(n,k) = A(n-1,k) + A(n-k-1,k).

A017901 Expansion of 1/(1 - x^7 - x^8 - ...).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 53, 66, 83, 105, 133, 168, 211, 264, 330, 413, 518, 651, 819, 1030, 1294, 1624, 2037, 2555, 3206, 4025, 5055, 6349, 7973, 10010, 12565, 15771, 19796, 24851, 31200, 39173
Offset: 0

Views

Author

Keywords

Comments

A Lamé sequence of higher order.
a(n) = number of compositions of n in which each part is >= 7. - Milan Janjic, Jun 28 2010
a(n+7) equals the number of n-length binary words such that 0 appears only in a run length that is a multiple of 7. - Milan Janjic, Feb 17 2015
A017847(n) = |a(-n)| for n>=0. - Michael Somos, Oct 28 2018

Examples

			G.f. = 1 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + 2*x^14 + ... - _Michael Somos_, Oct 28 2018
		

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, A000930, A017898, A017899, A017900, A017901, A017902, A017903, A017904.

Programs

  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    a := n -> (Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 0$5, 1][i] else 0 fi)^n)[7,7]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 04 2008
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,1}, {1,0,0,0,0,0,0}, 60] (* Jean-François Alcover, Mar 28 2017 *)
  • PARI
    Vec((x-1)/(x-1+x^7)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = if( n < 0, polcoeff( 1 / (1 + x^6 - x^7) + x * O(x^-n), -n), polcoeff( (1 - x) / (1 - x - x^7) + x * O(x^n), n))}; /* Michael Somos, Oct 28 2018 */

Formula

G.f.: (x-1)/(x-1+x^7). - Alois P. Heinz, Aug 04 2008
For positive integers n and k such that k <= n <= 7*k, and 6 divides n-k, define c(n,k) = binomial(k,(n-k)/6), and c(n,k) = 0, otherwise. Then, for n>=1, a(n+7) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011
a(n) = A005709(n) - A005709(n-1). - R. J. Mathar, Sep 07 2016
0 == a(n) + a(n+6) - a(n+7) for all n in Z. - Michael Somos, Oct 28 2018

A339110 Number of compositions (ordered partitions) of n into distinct parts >= 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 19, 21, 27, 35, 41, 49, 61, 69, 81, 95, 107, 121, 163, 177, 219, 263, 329, 373, 469, 537, 657, 755, 899, 1021, 1219, 1485, 1707, 2027, 2417, 2881, 3445, 4077, 4809, 5735, 6755, 7969, 9307
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2020

Keywords

Examples

			a(19) = 3 because we have [19], [10, 9] and [9, 10].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(n=0, p!, `if`((i-8)*(i+9)/2 b(n$2, 0):
    seq(a(n), n=0..69);  # Alois P. Heinz, Nov 23 2020
  • Mathematica
    nmax = 66; CoefficientList[Series[Sum[k! x^(k (k + 17)/2)/Product[1 - x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(k + 17)/2) / Product_{j=1..k} (1 - x^j).

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.
Showing 1-5 of 5 results.