cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A085028 Number of prime factors of cyclotomic(n,3), which is A019321(n), the value of the n-th cyclotomic polynomial evaluated at x=3.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 1, 3, 2, 1, 2, 2, 4, 1, 3, 3, 2, 2, 3, 1, 4, 3, 5, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 3, 4, 3, 2, 3, 2, 4, 2, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057958, number of prime factors of 3^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), this sequence (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 3]]][[2]], {n, 1, 100}]

A138933 Indices k such that A019321(k)=Phi[k](3) is prime, where Phi is a cyclotomic polynomial.

Original entry on oeis.org

1, 3, 6, 7, 9, 10, 12, 13, 14, 15, 21, 24, 26, 33, 36, 40, 46, 60, 63, 70, 71, 72, 86, 103, 108, 130, 132, 143, 145, 154, 161, 236, 255, 261, 276, 279, 287, 304, 364, 430, 464, 513, 528, 541, 562, 665, 672, 680, 707, 718, 747, 760, 782, 828, 875, 892, 974, 984
Offset: 1

Views

Author

M. F. Hasler, Apr 03 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[Cyclotomic[#, 3]] &]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,3)) && print1( i","))

A368424 Numbers k such that gcd(A019320(k), A019321(k)) > 1.

Original entry on oeis.org

4, 11, 18, 20, 23, 28, 35, 43, 48, 52, 83, 95, 100, 119, 131, 138, 148, 155, 162, 166, 172, 179, 191, 196, 204, 210, 214, 239, 251, 253, 268, 292, 299, 300, 316, 323, 342, 359, 371, 378, 388, 419, 431, 443, 460, 463, 491, 500, 508, 515, 537, 556, 564, 575
Offset: 1

Views

Author

Tomohiro Yamada, Dec 24 2023

Keywords

Comments

The corresponding greatest common divisors are given in A368425.

Examples

			a(1) = 4 since A019320(4) = 5 and A019321(4) = 10.
		

Crossrefs

Cf. A019320, A019321, A191609 (prime factors of such gcds), A368425.

Programs

  • Maple
    select(k -> igcd(numtheory:-cyclotomic(k,2),
    numtheory:-cyclotomic(k,3)) > 1, [$1..1000]); # Robert Israel, Dec 26 2023
  • Mathematica
    Select[Range[600],GCD[Cyclotomic[#,2],Cyclotomic[#,3]]>1&] (* Stefano Spezia, Dec 26 2023 *)
  • PARI
    for(n=1,1000,if(gcd(polcyclo(n,2),polcyclo(n,3))>1,print1(n,", ")))

A019325 Cyclotomic polynomials at x=7.

Original entry on oeis.org

7, 6, 8, 57, 50, 2801, 43, 137257, 2402, 117993, 2101, 329554457, 2353, 16148168401, 102943, 4956001, 5764802, 38771752331201, 117307, 1899815864228857, 5649505, 11898664849, 247165843, 4561457890013486057, 5762401, 79797014141614001, 12111126301, 1628413638264057
Offset: 0

Views

Author

Keywords

Comments

Sequence has a(0) = x; see comments in A020501.

Crossrefs

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=7,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Join[{7}, Cyclotomic[Range[50], 7]] (* Paolo Xausa, Feb 26 2024 *)
  • PARI
    a(n) = if(n==0, 7, polcyclo(n, 7)); \\ Michel Marcus, Dec 16 2017

Extensions

More terms from Michel Marcus, Dec 17 2017

A093107 Numbers n such that the Zsigmondy number Zs(n,3,1) differs from the n-th cyclotomic polynomial evaluated at 3.

Original entry on oeis.org

2, 4, 8, 16, 20, 32, 39, 42, 55, 64, 100, 128, 253, 256, 272, 294, 328, 342, 500, 507, 512, 605, 610, 666, 812, 876, 930, 1024, 1081, 1474, 1711, 1806, 2048, 2058, 2485, 2500, 2756, 2943, 3088, 3403, 3502, 4096, 4624, 4656, 5671, 5819, 6162, 6498, 6591, 6655
Offset: 1

Views

Author

Ralf Stephan, Mar 20 2004

Keywords

Comments

A019321(n) does not equal A064079(n).

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], GCD[#, Cyclotomic[#, 3]]!=1 &] (* Emmanuel Vantieghem, Nov 13 2016 *)

Extensions

More terms from Vladeta Jovovic, Apr 02 2004
Definition corrected by Jerry Metzger, Nov 04 2009

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A368425 The corresponding greatest common divisors to A368424(n).

Original entry on oeis.org

5, 23, 19, 5, 47, 29, 71, 431, 97, 53, 167, 191, 505, 239, 263, 139, 149, 311, 163, 499, 173, 359, 383, 197, 409, 211, 643, 479, 503, 23, 269, 293, 599, 1201, 317, 647, 19, 719, 743, 379, 389, 839, 863, 887, 461, 11113, 983, 5, 509, 1031, 4297, 557, 1129
Offset: 1

Views

Author

Tomohiro Yamada, Dec 24 2023

Keywords

Examples

			a(2) = 23 since gcd(A019320(A368424(2)), A019321(A368424(2))) = gcd(2047, 88573) = 23.
		

Crossrefs

Cf. A019320, A019321, A191609 (primes dividing some term of this sequence), A368424.

Programs

  • Maple
    subs(1=NULL, [seq(igcd(numtheory:-cyclotomic(n,2), numtheory:-cyclotomic(n,3)),n=1..1000)]); # Robert Israel, Dec 26 2023
  • Mathematica
    Select[GCD[Cyclotomic[Range[600], 2], Cyclotomic[Range[600], 3]],#>1&] (* Stefano Spezia, Dec 26 2023 *)
  • PARI
    for(n=1,1000,m=gcd(polcyclo(n,2),polcyclo(n,3));if(m>1,print1(m,", ")))

A211874 Primes of the form Phi_k(3), the k-th cyclotomic polynomial evaluated at 3.

Original entry on oeis.org

2, 7, 13, 61, 73, 547, 757, 1093, 4561, 6481, 368089, 398581, 530713, 797161, 42521761, 47763361, 2413941289, 23535794707, 282429005041, 374857981681, 144542918285300809, 150094634909578633, 13490012358249728401, 82064241848634269407
Offset: 1

Views

Author

Alexander Gruber, Feb 12 2013

Keywords

Crossrefs

Primes in A019321.

Programs

  • Mathematica
    Sort[Select[Cyclotomic[Range[1000], 3], PrimeQ]]
Showing 1-8 of 8 results.