cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A010006 Coordination sequence for C_3 lattice: a(n) = 16*n^2 + 2 (n>0), a(0)=1.

Original entry on oeis.org

1, 18, 66, 146, 258, 402, 578, 786, 1026, 1298, 1602, 1938, 2306, 2706, 3138, 3602, 4098, 4626, 5186, 5778, 6402, 7058, 7746, 8466, 9218, 10002, 10818, 11666, 12546, 13458, 14402, 15378, 16386, 17426, 18498, 19602, 20738, 21906, 23106, 24338, 25602, 26898
Offset: 0

Views

Author

N. J. A. Sloane, mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Comments

If Y_i (i=1,2,3) are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007
Also sequence found by reading the segment (1, 18) together with the line from 18, in the direction 18, 66, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Cf. A206399. For the coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C_3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50). Cf. A137513.

Programs

Formula

a(0)=1, a(n) = 16*n^2 + 2, n >= 1.
G.f.: (1+x)*(1+14*x+x^2)/(1-x)^3.
G.f. for coordination sequence of C_n lattice: (1/(1-z)^n)*Sum_{i=0..n} binomial(2*n, 2*i)*z^i.
E.g.f.: (x*(x+1)*16+2)*e^x - 1. - Gopinath A. R., Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=66, a(3)=146. - Harvey P. Dale, Oct 15 2012
G.f. for sequence with interpolated zeros: cosh(6*arctanh(x)) = (1/2)*( ((1 - x)/(1 + x))^3 + ((1 + x)/(1 - x))^3) = 1 + 18*x^2 + 66*x^4 + 146*x^6 + .... More generally, cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. Note that exp(t*arctanh(x)) is the e.g.f. for the Mittag_Leffler polynomials. See A137513. - Peter Bala, Apr 09 2017
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(2)/16*Pi*coth( Pi*sqrt(2)/4) = 1.095237238050... - R. J. Mathar, May 07 2024
a(n) = 2*A081585(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069129(n)+A069129(n+1). - R. J. Mathar, May 07 2024

A103884 Square array A(n,k) read by antidiagonals: row n gives coordination sequence for lattice C_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 66, 24, 1, 50, 192, 146, 32, 1, 72, 450, 608, 258, 40, 1, 98, 912, 1970, 1408, 402, 48, 1, 128, 1666, 5336, 5890, 2720, 578, 56, 1, 162, 2816, 12642, 20256, 14002, 4672, 786, 64, 1, 200, 4482, 27008, 59906, 58728, 28610, 7392, 1026, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    66,    146,     258,      402,       578, ... A010006;
  1,  32,   192,    608,    1408,     2720,      4672, ... A019560;
  1,  50,   450,   1970,    5890,    14002,     28610, ... A019561;
  1,  72,   912,   5336,   20256,    58728,    142000, ... A019562;
  1,  98,  1666,  12642,   59906,   209762,    596610, ... A019563;
  1, 128,  2816,  27008,  157184,   658048,   2187520, ... A019564;
  1, 162,  4482,  53154,  374274,  1854882,   7159170, ... A035746;
  1, 200,  6800,  97880,  822560,  4780008,  21278640, ... A035747;
  1, 242,  9922, 170610, 1690370, 11414898,  58227906, ... A035748;
  1, 288, 14016, 284000, 3281280, 25534368, 148321344, ... A035749;
  ...
Antidiagonals, T(n, k), begins as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   66,   24;
  1,  50,  192,  146,   32;
  1,  72,  450,  608,  258,   40;
  1,  98,  912, 1970, 1408,  402,  48;
  1, 128, 1666, 5336, 5890, 2720, 578, 56;
		

Crossrefs

Programs

  • Magma
    A103884:= func< n,k | k eq 0 select 1 else 2*(&+[2^j*Binomial(n-k,j+1)*Binomial(2*k-1,j) : j in [0..2*k-1]]) >;
    [A103884(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, May 23 2023
    
  • Mathematica
    nmin = 2; nmax = 11; t[n_, 0]= 1; t[n_, k_]:= 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk= Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after formula *)
  • SageMath
    def A103884(n,k): return 1 if k==0 else 2*sum(2^j*binomial(n-k,j+1)*binomial(2*k-1,j) for j in range(2*k))
    flatten([[A103884(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, May 23 2023

Formula

A(n,k) = Sum_{i=1..2*k} 2^i*C(n, i)*C(2*k-1, i-1), A(n,0) = 1 (array).
G.f. of n-th row: (Sum_{i=0..n} C(2*n, 2*i)*x^i)/(1-x)^n.
T(n, k) = A(n-k, k) (antidiagonals).
T(n, n-2) = A022144(n-2).
T(n, k) = 2*(n-k)*Hypergeometric2F1([1+k-n, 1-2*k], [2], 2), T(n, 0) = 1, for n >= 2, 0 <= k <= n-2. - G. C. Greubel, May 23 2023
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Chebyshev_T(n, (1 + x)/(1 - x)), where Chebyshev_T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
T(n+1,k) = T(n+1,k-1) + 2*T(n,k) + 2*T(n,k-1) + T(n-1,k) - T(n-1,k-1). (End)

Extensions

Definition clarified by N. J. A. Sloane, May 25 2023

A019560 Coordination sequence for C_4 lattice.

Original entry on oeis.org

1, 32, 192, 608, 1408, 2720, 4672, 7392, 11008, 15648, 21440, 28512, 36992, 47008, 58688, 72160, 87552, 104992, 124608, 146528, 170880, 197792, 227392, 259808, 295168, 333600, 375232, 420192, 468608
Offset: 0

Views

Author

mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Crossrefs

Cf. A103884 (row 4). For coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50).

Programs

  • Magma
    [1] cat [(32/3)*n*(1 + 2*n^2): n in [1..40]]; // Vincenzo Librandi, Apr 10 2017
  • Mathematica
    Join[{1}, Table[(32/3) n (1 + 2 n^2), {n, 30}]] (* Vincenzo Librandi, Apr 10 2017 *)

Formula

a(n) = (32/3)*n*(1 + 2*n^2) for n>0.
G.f.: (1 + 28*x + 70*x^2 + 28*x^3 + x^4)/(1 - x)^4.
G.f. for sequence with interpolated zeros: cosh(8*arctanh(x)) = 1/2*(((1 + x)/(1 - x))^4 + ((1 - x)/(1 + x))^4) = 1 + 32*x^2 + 192*x^4 + 608*x^6 + .... Cf. A057813. - Peter Bala, Apr 09 2017
a(n) = A008412(2*n). - Seiichi Manyama, Jun 08 2018

A019561 Coordination sequence for C_5 lattice.

Original entry on oeis.org

1, 50, 450, 1970, 5890, 14002, 28610, 52530, 89090, 142130, 216002, 315570, 446210, 613810, 824770, 1086002, 1404930, 1789490, 2248130, 2789810, 3424002, 4160690, 5010370, 5984050, 7093250, 8350002
Offset: 0

Views

Author

mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Crossrefs

Cf. A103884 (row 5). For coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50).

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,50,450,1970,5890,14002},30] (* Harvey P. Dale, Nov 21 2021 *)

Formula

G.f.: (1+45*x+210*x^2+210*x^3+45*x^4+x^5)/(1-x)^5 = 1+2*x*(5+10*x+x^2)^2/(1-x)^5.
G.f. for sequence with interpolated zeros: cosh(10*arctanh(x)) = 1/2*( ((1 + x)/(1 - x))^5 + ((1 - x)/(1 + x))^5 ) = 1 + 50*x^2 + 450*x^4 + 1970*x^6 + .... - Peter Bala, Apr 09 2017
a(n) = A008413(2*n). - Seiichi Manyama, Jun 08 2018

A305722 Crystal ball sequence for the lattice C_8.

Original entry on oeis.org

1, 129, 2945, 29953, 187137, 845185, 3032705, 9173505, 24331777, 58161793, 127791489, 261902081, 506298625, 931299201, 1641303169, 2786931713, 4580166657, 7312946305, 11379709825, 17304414465, 25772582657, 37668968833, 54121468545, 76551925249
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2018

Keywords

Comments

Partial sums of A019564.

Crossrefs

Programs

  • GAP
    b:=8;; List([0..25],n->Sum([0..b],k->Binomial(2*b,2*k)*Binomial(n+k,b))); # Muniru A Asiru, Jun 09 2018
  • PARI
    {a(n) = sum(k=0, 8, binomial(16, 2*k)*binomial(n+k, 8))}
    
  • PARI
    Vec((1 + 120*x + 1820*x^2 + 8008*x^3 + 12870*x^4 + 8008*x^5 + 1820*x^6 + 120*x^7 + x^8) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Jun 09 2018
    

Formula

a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9), for n>8.
a(n) = Sum_{k=0..8} binomial(16, 2k)*binomial(n+k, 8).
G.f.: (1 + 120*x + 1820*x^2 + 8008*x^3 + 12870*x^4 + 8008*x^5 + 1820*x^6 + 120*x^7 + x^8) / (1 - x)^9. - Colin Barker, Jun 09 2018
Showing 1-5 of 5 results.