cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019669 Decimal expansion of Pi/2.

Original entry on oeis.org

1, 5, 7, 0, 7, 9, 6, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 4, 4, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 8, 7, 5, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 2, 2, 9, 6, 1, 5, 3, 9, 0, 8, 2, 0, 3, 1, 4, 3, 1, 0, 4, 4, 9, 9, 3, 1, 4, 0, 1, 7, 4, 1, 2, 6, 7, 1, 0, 5, 8, 5, 3
Offset: 1

Views

Author

Keywords

Comments

With offset 2, decimal expansion of 5*Pi. - Omar E. Pol, Oct 03 2013
Decimal expansion of the number of radians in a quadrant. - John W. Nicholson, Oct 07 2013
Not the same as A085679. First differing term occurs at 10^-49, as list -49, or 51st counting term (a(-49)= 5 and A085679(-49) = 4). - John W. Nicholson, Oct 07 2013
5*Pi is also the surface area of a sphere whose diameter equals the square root of 5. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 22 2013
Pi/2 is also the radius of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Dec 27 2013

Examples

			Pi/2 = 1.570796326794896619231321691639751442098584699...
5*Pi = 15.70796326794896619231321691639751442098584699...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.4.1 and 1.4.2, pp. 20-21.

Crossrefs

Cf. A053300 (continued fraction), A060294 (2/Pi).
Cf. A000796, A019692, A122952, A019694 (Pi through 4*Pi), A106854.

Programs

Formula

Pi/2 = log(i)/i, where i = sqrt(-1). - Eric Desbiaux, Jun 27 2009
Pi/2 = Product_{n>=1} (n/(n+1))^((-1)^n) = 2 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * 8/7 * 8/9 * 10/9 * ... (Wallis formula). - William Keith and Alonso del Arte, Jun 24 2012
Equals Sum_{k>1} 2^k/binomial(2*k,k). - Bruno Berselli, Sep 11 2015
The previous result is the particular case n = 1 of the more general identity: Pi/2 = 4^(n-1) * n!/(2*n)! * Sum_{k >= 2} 2^(k+1)*(k + n - 1)!*(k + 2*n - 2)!/(2*k + 2*n - 2)! valid for n = 0,1,2,... . - Peter Bala, Oct 26 2016
Pi/2 = Product_{n>=1} (4*n^2)/(4*n^2-1). - Fred Daniel Kline, Oct 29 2016
Pi/2 = lim_{n->oo} F(2^(n+3))/2, with one half of the area of a regular 2^(n+3)-gon, for n >= 0, inscribed in the unit circle, written as iterated square roots of 2 as F(2^(n+3))/2 = 2^n*sqrt(2 + sq2(n)), with sq2(n) = sqrt(2 + sq2(n-1)), n >= 1, with input sq2(0) = 0 (2 appears n times in sq2(n)). Viète's infinite product formula works with the partial product F(2^(n+2))/2 = Product_{j=1..n} (2/sq2(j)), n >= 1, which corresponds to the above given formula. - Wolfdieter Lang, Jul 06 2018
Pi/2 = Integral_{x = 0..oo} sin(x)^2/x^2 dx = 1/2 + Sum_{n >= 1} sin(n)^2/n^2, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals Sum_{k>=0} k!/(2*k + 1)!!.
Equals Sum_{k>=0} (-1)^k/(k + 1/2).
Equals Integral_{x=0..oo} 1/(x^2 + 1) dx.
Equals Integral_{x=0..oo} sin(x)/x dx.
Equals Integral_{x=0..oo} exp(x/2)/(exp(x) + 1) dx.
Equals Product_{p prime > 2} p/(p + (-1)^((p-1)/2)). (End)
Pi/2 = Integral_{x = 0..oo} 1/(1 - x^2 + x^4) dx = (1 + 2/3 + 1/5) - (1/7 + 2/9 + 1/11) + (1/13 + 2/15 + 1/17) - .... - Peter Bala, Jul 22 2022
Equals arcsin(9/10) + sqrt(19)*Sum_{k >= 1} A106854(k-1)/(k*10^k) (see Bailey and Crandall, 2001). - Paolo Xausa, Jul 15 2024
Equals 2F1(1/2,1/2 ; 3/2; 1). - R. J. Mathar, Aug 20 2024
Pi/2 = [1;1,1/2,1/3,...,1/n,...] by Wallis's approximation. - Thomas Ordowski, Oct 19 2024
From Stefano Spezia, Oct 21 2024: (Start)
Equals Sum_{k>=0} 2^k/((2*k + 1)*binomial(2*k,k)) (see Finch).
Equals Limit_{n->oo} 2^(4*n)/((2*n + 1)*binomial(2*n,n)^2) (see Finch). (End)
Equals Integral_{x=-oo..oo} sech((2*x^3 + x^2 - 5*x)/(x^2 - 1)) dx. - Kritsada Moomuang, May 29 2025