A019692 Decimal expansion of 2*Pi.
6, 2, 8, 3, 1, 8, 5, 3, 0, 7, 1, 7, 9, 5, 8, 6, 4, 7, 6, 9, 2, 5, 2, 8, 6, 7, 6, 6, 5, 5, 9, 0, 0, 5, 7, 6, 8, 3, 9, 4, 3, 3, 8, 7, 9, 8, 7, 5, 0, 2, 1, 1, 6, 4, 1, 9, 4, 9, 8, 8, 9, 1, 8, 4, 6, 1, 5, 6, 3, 2, 8, 1, 2, 5, 7, 2, 4, 1, 7, 9, 9, 7, 2, 5, 6, 0, 6, 9, 6, 5, 0, 6, 8, 4, 2, 3, 4, 1, 3
Offset: 1
Examples
6.283185307179586476925286766559005768394338798750211641949889184615632...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4, p. 17.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 69.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Robert Ferréol, Deltoid, Mathcurve.
- Christophe Garban and José A. Trujillo Ferreras, The expected area of the filled planar Brownian loop is pi/5, Communications in mathematical physics, Vol. 264, No. 3 (2006), pp. 797-810, preprint, arXiv:math/0504496 [math.PR], 2005.
- Peter Harremoës, Al-Kashi’s constant
- Michael Hartl, The Tau Manifesto.
- Melissa Larson, Verifying and discovering BBP-type formulas, 2008.
- Bob Palais, Web page about "Pi is wrong!".
- Bob Palais, Pi is wrong!, The Mathematical Intelligencer Volume 23, Number 3, 2001, pp. 7-8.
- Grant Sanderson, How pi was almost 6.283185..., 3Blue1Brown video (2018).
- Michael I. Shamos, A catalog of the real numbers, (2007). See p. 318.
- Wikipedia, Tau proposals.
- Wikipedia, Bailey-Borwein-Plouffe formula.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Julia
using Nemo RR = RealField(334) tau = const_pi(RR) + const_pi(RR) tau |> println # Peter Luschny, Mar 14 2018
-
Magma
R:= RealField(100); 2*Pi(R); // G. C. Greubel, Mar 08 2018
-
Mathematica
RealDigits[N[2 Pi, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
-
PARI
default(realprecision, 20080); x=2*Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019692.txt", n, " ", d)); \\ Harry J. Smith, May 31 2009
-
Python
# Use some guard digits when computing. # BBP formula P(1, 16, 8, (0, 8, 4, 4, 0, 0, -1, 0)). from decimal import Decimal as dec, getcontext def BBPtau(n: int) -> dec: getcontext().prec = n s = dec(0); f = dec(1); g = dec(16) for k in range(n): ek = dec(8 * k) s += f * ( dec(8) / (ek + 2) + dec(4) / (ek + 3) + dec(4) / (ek + 4) - dec(1) / (ek + 7)) f /= g return s print(BBPtau(200)) # Peter Luschny, Nov 03 2023
Formula
e^(Zeta'(0)/Zeta(0)) = 2*Pi. - Peter Luschny, Jun 17 2018
From Peter Bala, Oct 30 2019: (Start)
2*Pi = Sum_{n >= 0} (-1)^n*( 1/(n + 1/6) + 1/(n + 5/6) ).
2*Pi = Sum_{n >= 0} (-1)^n*( 1/(n + 1/10) - 1/(n + 3/10) - 1/(n + 7/10) + 1/(n + 9/10) ). Cf. A091925 and A244979. (End)
From Amiram Eldar, Aug 06 2020: (Start)
Equals Gamma(1/6)*Gamma(5/6).
Equals Integral_{x=0..oo} log(1 + 1/x^6) dx.
Equals Integral_{x=0..oo} log(1 + 4/x^2) dx.
Equals Integral_{x=-oo..oo} exp(x/6)/(exp(x) + 1) dx.
Equals Sum_{k>=0} 1/((k + 1/4)*(k + 3/4)). (End)
Equals 4*Integral_{x=0..1} 1/sqrt(1 - x^2) dx (see Finch). - Stefano Spezia, Oct 19 2024
Comments