cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 69 results. Next

A000796 Decimal expansion of Pi (or digits of Pi).

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7, 9, 8, 2, 1, 4
Offset: 1

Views

Author

Keywords

Comments

Sometimes called Archimedes's constant.
Ratio of a circle's circumference to its diameter.
Also area of a circle with radius 1.
Also surface area of a sphere with diameter 1.
A useful mnemonic for remembering the first few terms: How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics ...
Also ratio of surface area of sphere to one of the faces of the circumscribed cube. Also ratio of volume of a sphere to one of the six inscribed pyramids in the circumscribed cube. - Omar E. Pol, Aug 09 2012
Also surface area of a quarter of a sphere of radius 1. - Omar E. Pol, Oct 03 2013
Also the area under the peak-shaped even function f(x)=1/cosh(x). Proof: for the upper half of the integral, write f(x) = (2*exp(-x))/(1+exp(-2x)) = 2*Sum_{k>=0} (-1)^k*exp(-(2k+1)*x) and integrate term by term from zero to infinity. The result is twice the Gregory series for Pi/4. - Stanislav Sykora, Oct 31 2013
A curiosity: a 144 X 144 magic square of 7th powers was recently constructed by Toshihiro Shirakawa. The magic sum = 3141592653589793238462643383279502884197169399375105, which is the concatenation of the first 52 digits of Pi. See the MultiMagic Squares link for details. - Christian Boyer, Dec 13 2013 [Comment revised by N. J. A. Sloane, Aug 27 2014]
x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 25 2013
Also diameter of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Jan 13 2014
From Daniel Forgues, Mar 20 2015: (Start)
An interesting anecdote about the base-10 representation of Pi, with 3 (integer part) as first (index 1) digit:
358 0
359 3
360 6
361 0
362 0
And the circle is customarily subdivided into 360 degrees (although Pi radians yields half the circle)...
(End)
Sometimes referred to as Archimedes's constant, because the Greek mathematician computed lower and upper bounds of Pi by drawing regular polygons inside and outside a circle. In Germany it was called the Ludolphian number until the early 20th century after the Dutch mathematician Ludolph van Ceulen (1540-1610), who calculated up to 35 digits of Pi in the late 16th century. - Martin Renner, Sep 07 2016
As of the beginning of 2019 more than 22 trillion decimal digits of Pi are known. See the Wikipedia article "Chronology of computation of Pi". - Harvey P. Dale, Jan 23 2019
On March 14, 2019, Emma Haruka Iwao announced the calculation of 31.4 trillion digits of Pi using Google Cloud's infrastructure. - David Radcliffe, Apr 10 2019
Also volume of three quarters of a sphere of radius 1. - Omar E. Pol, Aug 16 2019
On August 5, 2021, researchers from the University of Applied Sciences of the Grisons in Switzerland announced they had calculated 62.8 trillion digits. Guinness World Records has not verified this yet. - Alonso del Arte, Aug 23 2021
The Hermite-Lindemann (1882) theorem states, that if z is a nonzero algebraic number, then e^z is a transcendent number. The transcendence of Pi then results from Euler's relation: e^(i*Pi) = -1. - Peter Luschny, Jul 21 2023
The 10000 words of the book "Not A Wake" by Michael Keith, written in Pilish, match in length the first 10000 digits of Pi. - Paolo Xausa, Aug 07 2025

Examples

			3.1415926535897932384626433832795028841971693993751058209749445923078164062\
862089986280348253421170679821480865132823066470938446095505822317253594081\
284811174502841027019385211055596446229489549303819...
		

References

  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
  • J. Arndt & C. Haenel, Pi Unleashed, Springer NY 2001.
  • P. Beckmann, A History of Pi, Golem Press, Boulder, CO, 1977.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 396.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 237-239.
  • J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997.
  • P. Eyard and J.-P. Lafon, The Number Pi, Amer. Math. Soc., 2004.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.4.
  • Le Petit Archimede, Special Issue On Pi, Supplement to No. 64-5, May 1980 ADCS Amiens.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equations 1:7:1, 1:7:2 at pages 12-13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 48-55.

Crossrefs

Cf. A001203 (continued fraction).
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), this sequence (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A224750 (b=26), A224751 (b=27), A060707 (b=60). - Jason Kimberley, Dec 06 2012
Decimal expansions of expressions involving Pi: A002388 (Pi^2), A003881 (Pi/4), A013661 (Pi^2/6), A019692 (2*Pi=tau), A019727 (sqrt(2*Pi)), A059956 (6/Pi^2), A060294 (2/Pi), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8), A163973 (Pi/log(2)).
Cf. A001901 (Pi/2; Wallis), A002736 (Pi^2/18; Euler), A007514 (Pi), A048581 (Pi; BBP), A054387 (Pi; Newton), A092798 (Pi/2), A096954 (Pi/4; Machin), A097486 (Pi), A122214 (Pi/2), A133766 (Pi/4 - 1/2), A133767 (5/6 - Pi/4), A166107 (Pi; MGL).

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a000796 n = a000796_list (n + 1) !! (n + 1)
    a000796_list len = map digitToInt $ show $ machin' `div` (10 ^ 10) where
       machin' = 4 * (4 * arccot 5 unity - arccot 239 unity)
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
          | term == 0 = summa
          | otherwise = arccot'
            x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
          where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Haskell
    -- See Niemeijer link and also Gibbons link.
    a000796 n = a000796_list !! (n-1) :: Int
    a000796_list = map fromInteger $ piStream (1, 0, 1)
       [(n, a*d, d) | (n, d, a) <- map (\k -> (k, 2 * k + 1, 2)) [1..]] where
       piStream z xs'@(x:xs)
         | lb /= approx z 4 = piStream (mult z x) xs
         | otherwise = lb : piStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 3
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jul 14 2013, Jun 12 2013
    
  • Macsyma
    py(x) := if equal(6,6+x^2) then 2*x else (py(x:x/3),3*%%-4*(%%-x)^3); py(3.); py(dfloat(%)); block([bfprecision:35], py(bfloat(%))) /* Bill Gosper, Sep 09 2002 */
    
  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi))); // Bruno Berselli, Mar 12 2013
    
  • Maple
    Digits := 110: Pi*10^104:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 29 2019
  • Mathematica
    RealDigits[ N[ Pi, 105]] [[1]]
    Table[ResourceFunction["NthDigit"][Pi, n], {n, 1, 102}] (* Joan Ludevid, Jun 22 2022; easy to compute a(10000000)=7 with this function; requires Mathematica 12.0+ *)
  • PARI
    { default(realprecision, 20080); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b000796.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
    
  • PARI
    A796=[]; A000796(n)={if(n>#A796, localprec(n*6\5+29); A796=digits(Pi\.1^(precision(Pi)-3))); A796[n]} \\ NOTE: as the other programs, this returns the n-th term of the sequence, with n = 1, 2, 3, ... and not n = 1, 0, -1, -2, .... - M. F. Hasler, Jun 21 2022
    
  • PARI
    first(n)= default(realprecision, n+10); digits(floor(Pi*10^(n-1))) \\ David A. Corneth, Jun 21 2022
    
  • PARI
    lista(nn, p=20)= {my(u=10^(nn+p+1), f(x, u)=my(n=1, q=u\x, r=q, s=1, t); while(t=(q\=(x*x))\(n+=2), r+=(s=-s)*t); r*4); digits((4*f(5, u)-f(239, u))\10^(p+2)); } \\ Machin-like, with p > the maximal number of consecutive 9-digits to be expected (A048940) - Ruud H.G. van Tol, Dec 26 2024
    
  • Python
    from sympy import pi, N; print(N(pi, 1000)) # David Radcliffe, Apr 10 2019
    
  • Python
    from mpmath import mp
    def A000796(n):
        if n >= len(A000796.str): mp.dps = n*6//5+50; A000796.str = str(mp.pi-5/mp.mpf(10)**mp.dps)
        return int(A000796.str[n if n>1 else 0])
    A000796.str = '' # M. F. Hasler, Jun 21 2022
    
  • SageMath
    m=125
    x=numerical_approx(pi, digits=m+5)
    a=[ZZ(i) for i in x.str(skip_zeroes=True) if i.isdigit()]
    a[:m] # G. C. Greubel, Jul 18 2023

Formula

Pi = 4*Sum_{k>=0} (-1)^k/(2k+1) [Madhava-Gregory-Leibniz, 1450-1671]. - N. J. A. Sloane, Feb 27 2013
From Johannes W. Meijer, Mar 10 2013: (Start)
2/Pi = (sqrt(2)/2) * (sqrt(2 + sqrt(2))/2) * (sqrt(2 + sqrt(2 + sqrt(2)))/2) * ... [Viete, 1593]
2/Pi = Product_{k>=1} (4*k^2-1)/(4*k^2). [Wallis, 1655]
Pi = 3*sqrt(3)/4 + 24*(1/12 - Sum_{n>=2} (2*n-2)!/((n-1)!^2*(2*n-3)*(2*n+1)*2^(4*n-2))). [Newton, 1666]
Pi/4 = 4*arctan(1/5) - arctan(1/239). [Machin, 1706]
Pi^2/6 = 3*Sum_{n>=1} 1/(n^2*binomial(2*n,n)). [Euler, 1748]
1/Pi = (2*sqrt(2)/9801) * Sum_{n>=0} (4*n)!*(1103+26390*n)/((n!)^4*396^(4*n)). [Ramanujan, 1914]
1/Pi = 12*Sum_{n>=0} (-1)^n*(6*n)!*(13591409 + 545140134*n)/((3*n)!*(n!)^3*(640320^3)^(n+1/2)). [David and Gregory Chudnovsky, 1989]
Pi = Sum_{n>=0} (1/16^n) * (4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)). [Bailey-Borwein-Plouffe, 1989] (End)
Pi = 4 * Sum_{k>=0} 1/(4*k+1) - 1/(4*k+3). - Alexander R. Povolotsky, Dec 25 2008
Pi = 4*sqrt(-1*(Sum_{n>=0} (i^(2*n+1))/(2*n+1))^2). - Alexander R. Povolotsky, Jan 25 2009
Pi = Integral_{x=-oo..oo} dx/(1+x^2). - Mats Granvik and Gary W. Adamson, Sep 23 2012
Pi - 2 = 1/1 + 1/3 - 1/6 - 1/10 + 1/15 + 1/21 - 1/28 - 1/36 + 1/45 + ... [Jonas Castillo Toloza, 2007], that is, Pi - 2 = Sum_{n>=1} (1/((-1)^floor((n-1)/2)*(n^2+n)/2)). - José de Jesús Camacho Medina, Jan 20 2014
Pi = 3 * Product_{t=img(r),r=(1/2+i*t) root of zeta function} (9+4*t^2)/(1+4*t^2) <=> RH is true. - Dimitris Valianatos, May 05 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Pi = Sum_{k>=1} (3^k - 1)*zeta(k+1)/4^k.
Pi = 2*Product_{k>=2} sec(Pi/2^k).
Pi = 2*Integral_{x>=0} sin(x)/x dx. (End)
Pi = 2^{k + 1}*arctan(sqrt(2 - a_{k - 1})/a_k) at k >= 2, where a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2). - Sanjar Abrarov, Feb 07 2017
Pi = Integral_{x = 0..2} sqrt(x/(2 - x)) dx. - Arkadiusz Wesolowski, Nov 20 2017
Pi = lim_{n->oo} 2/n * Sum_{m=1,n} ( sqrt( (n+1)^2 - m^2 ) - sqrt( n^2 - m^2 ) ). - Dimitri Papadopoulos, May 31 2019
From Peter Bala, Oct 29 2019: (Start)
Pi = Sum_{n >= 0} 2^(n+1)/( binomial(2*n,n)*(2*n + 1) ) - Euler.
More generally, Pi = (4^x)*x!/(2*x)! * Sum_{n >= 0} 2^(n+1)*(n+x)!*(n+2*x)!/(2*n+2*x+1)! = 2*4^x*x!^2/(2*x+1)! * hypergeom([2*x+1,1], [x+3/2], 1/2), valid for complex x not in {-1,-3/2,-2,-5/2,...}. Here, x! is shorthand notation for the function Gamma(x+1). This identity may be proved using Gauss's second summation theorem.
Setting x = 3/4 and x = -1/4 (resp. x = 1/4 and x = -3/4) in the above identity leads to series representations for the constant A085565 (resp. A076390). (End)
Pi = Im(log(-i^i)) = log(i^i)*(-2). - Peter Luschny, Oct 29 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals 2 + Integral_{x=0..1} arccos(x)^2 dx.
Equals Integral_{x=0..oo} log(1 + 1/x^2) dx.
Equals Integral_{x=0..oo} log(1 + x^2)/x^2 dx.
Equals Integral_{x=-oo..oo} exp(x/2)/(exp(x) + 1) dx. (End)
Equals 4*(1/2)!^2 = 4*Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
From Peter Bala, Dec 08 2021: (Start)
Pi = 32*Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9))= 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)).
More generally, it appears that for k = 1,2,3,..., Pi = 16*(2*k)!*Sum_{n >= 1} (-1)^(n+k+1)*n^2/((4*n^2 - 1)* ... *(4*n^2 - (2*k+1)^2)).
Pi = 32*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^2 = 768*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2*(4*n^2 - 9)^2).
More generally, it appears that for k = 0,1,2,..., Pi = 16*Catalan(k)*(2*k)!*(2*k+2)!*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2* ... *(4*n^2 - (2*k+1)^2)^2).
Pi = (2^8)*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^4 = (2^17)*(3^5)*Sum_{n >= 2} (-1)^n*n^2*(n^2 - 1)/((4*n^2 - 1)^4*(4*n^2 - 9)^4) = (2^27)*(3^5)*(5^5)* Sum_{n >= 3} (-1)^(n+1)*n^2*(n^2 - 1)*(n^2 - 4)/((4*n^2 - 1)^4*(4*n^2 - 9)^4*(4*n^2 - 25)^4). (End)
For odd n, Pi = (2^(n-1)/A001818((n-1)/2))*gamma(n/2)^2. - Alan Michael Gómez Calderón, Mar 11 2022
Pi = 4/phi + Sum_{n >= 0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
Pi = sqrt(3)*(27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..1} 1/sqrt(x-x^2) dx. - Michal Paulovic, Sep 24 2023
From Peter Bala, Oct 28 2023: (Start)
Pi = 48*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*(6*n + 5)).
More generally, it appears that for k >= 0 we have Pi = A(k) + B(k)*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 5)), where A(k) is a rational approximation to Pi and B(k) = (3 * 2^(3*k+3) * (3*k + 2)!) / (2^(3*k+1) - (-1)^k). The first few values of A(k) for k >= 0 are [0, 256/85, 65536/20955, 821559296/261636375, 6308233216/2008080987, 908209489444864/289093830828075, ...].
Pi = 16/5 - (288/5)*Sum_{n >= 0} (-1)^n * (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 9)).
More generally, it appears that for k >= 0 we have Pi = C(k) + D(k)*Sum_{n >= 0} (-1)^n* (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 3)), where C(k) and D(k) are rational numbers. The case k = 0 is the Madhava-Gregory-Leibniz series for Pi.
Pi = 168/53 + (288/53)*Sum_{n >= 0} (-1)^n * (42*n^2 + 25*n)/((6*n + 1)*(6*n + 3)*(6*n + 5)*(6*n + 7)).
More generally, it appears that for k >= 1 we have Pi = E(k) + F(k)*Sum_{n >= 0} (-1)^n * (6*(6*k + 1)*n^2 + (24*k + 1)*n)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 1)), where E(k) and F(k) are rational numbers. (End)
From Peter Bala, Nov 10 2023: (Start)
The series representation Pi = 4 * Sum_{k >= 0} 1/(4*k + 1) - 1/(4*k + 3) given above by Alexander R. Povolotsky, Dec 25 2008, is the case n = 0 of the more general result (obtained by the WZ method): for n >= 0, there holds
Pi = Sum_{j = 0.. n-1} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) + 8*(n+1)!*Sum_{k >= 0} 1/((4*k + 1)*(4*k + 3)*...*(4*k + 2*n + 3)).
Letting n -> oo gives the rapidly converging series Pi = Sum_{j >= 0} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) due to Euler.
More generally, it appears that for n >= 1, Pi = 1/(2*n-1)!!^2 * Sum_{j >= 0} (Product_{i = 0..2*n-1} j - i) * 2^(j+1)/((2*j + 1)*binomial(2*j,j)).
For any integer n, Pi = (-1)^n * 4 * Sum_{k >= 0} 1/(4*k + 1 + 2*n) - 1/(4*k + 3 - 2*n). (End)
Pi = Product_{k>=1} ((k^3*(k + 2)*(2*k + 1)^2)/((k + 1)^4*(2*k - 1)^2))^k. - Antonio Graciá Llorente, Jun 13 2024
Equals Integral_{x=0..2} sqrt(8 - x^2) dx - 2 (see Ambrisi and Rizzi). - Stefano Spezia, Jul 21 2024
Equals 3 + 4*Sum_{k>0} (-1)^(k+1)/(4*k*(1+k)*(1+2*k)) (see Wells at p. 53). - Stefano Spezia, Aug 31 2024
Equals 4*Integral_{x=0..1} sqrt(1 - x^2) dx = lim_{n->oo} (4/n^2)*Sum_{k=0..n} sqrt(n^2 - k^2) (see Finch). - Stefano Spezia, Oct 19 2024
Equals Beta(1/2,1/2) (see Shamos). - Stefano Spezia, Jun 03 2025
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals 2 + Integral_{x=0..1} 1/(sqrt(x)*(1 + sqrt(1 - x))) dx.
Equals 2 + Integral_{x=0..1} log(1 + sqrt(1 - x))/sqrt(x) dx. (End)
Pi = 2*arccos(1/phi) + arccos(1/phi^3) = 4*arcsin(1/phi) + 2*arcsin(1/phi^3) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, Jul 02 2025
Pi = Sum_{n >= 0} zeta(2*n)*(2^(2*n - 1) - 1)/2^(4*n - 3). - Andrea Pinos, Jul 29 2025

Extensions

Additional comments from William Rex Marshall, Apr 20 2001

A019669 Decimal expansion of Pi/2.

Original entry on oeis.org

1, 5, 7, 0, 7, 9, 6, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 2, 3, 1, 3, 2, 1, 6, 9, 1, 6, 3, 9, 7, 5, 1, 4, 4, 2, 0, 9, 8, 5, 8, 4, 6, 9, 9, 6, 8, 7, 5, 5, 2, 9, 1, 0, 4, 8, 7, 4, 7, 2, 2, 9, 6, 1, 5, 3, 9, 0, 8, 2, 0, 3, 1, 4, 3, 1, 0, 4, 4, 9, 9, 3, 1, 4, 0, 1, 7, 4, 1, 2, 6, 7, 1, 0, 5, 8, 5, 3
Offset: 1

Views

Author

Keywords

Comments

With offset 2, decimal expansion of 5*Pi. - Omar E. Pol, Oct 03 2013
Decimal expansion of the number of radians in a quadrant. - John W. Nicholson, Oct 07 2013
Not the same as A085679. First differing term occurs at 10^-49, as list -49, or 51st counting term (a(-49)= 5 and A085679(-49) = 4). - John W. Nicholson, Oct 07 2013
5*Pi is also the surface area of a sphere whose diameter equals the square root of 5. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 22 2013
Pi/2 is also the radius of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Dec 27 2013

Examples

			Pi/2 = 1.570796326794896619231321691639751442098584699...
5*Pi = 15.70796326794896619231321691639751442098584699...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.4.1 and 1.4.2, pp. 20-21.

Crossrefs

Cf. A053300 (continued fraction), A060294 (2/Pi).
Cf. A000796, A019692, A122952, A019694 (Pi through 4*Pi), A106854.

Programs

Formula

Pi/2 = log(i)/i, where i = sqrt(-1). - Eric Desbiaux, Jun 27 2009
Pi/2 = Product_{n>=1} (n/(n+1))^((-1)^n) = 2 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * 8/7 * 8/9 * 10/9 * ... (Wallis formula). - William Keith and Alonso del Arte, Jun 24 2012
Equals Sum_{k>1} 2^k/binomial(2*k,k). - Bruno Berselli, Sep 11 2015
The previous result is the particular case n = 1 of the more general identity: Pi/2 = 4^(n-1) * n!/(2*n)! * Sum_{k >= 2} 2^(k+1)*(k + n - 1)!*(k + 2*n - 2)!/(2*k + 2*n - 2)! valid for n = 0,1,2,... . - Peter Bala, Oct 26 2016
Pi/2 = Product_{n>=1} (4*n^2)/(4*n^2-1). - Fred Daniel Kline, Oct 29 2016
Pi/2 = lim_{n->oo} F(2^(n+3))/2, with one half of the area of a regular 2^(n+3)-gon, for n >= 0, inscribed in the unit circle, written as iterated square roots of 2 as F(2^(n+3))/2 = 2^n*sqrt(2 + sq2(n)), with sq2(n) = sqrt(2 + sq2(n-1)), n >= 1, with input sq2(0) = 0 (2 appears n times in sq2(n)). Viète's infinite product formula works with the partial product F(2^(n+2))/2 = Product_{j=1..n} (2/sq2(j)), n >= 1, which corresponds to the above given formula. - Wolfdieter Lang, Jul 06 2018
Pi/2 = Integral_{x = 0..oo} sin(x)^2/x^2 dx = 1/2 + Sum_{n >= 1} sin(n)^2/n^2, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals Sum_{k>=0} k!/(2*k + 1)!!.
Equals Sum_{k>=0} (-1)^k/(k + 1/2).
Equals Integral_{x=0..oo} 1/(x^2 + 1) dx.
Equals Integral_{x=0..oo} sin(x)/x dx.
Equals Integral_{x=0..oo} exp(x/2)/(exp(x) + 1) dx.
Equals Product_{p prime > 2} p/(p + (-1)^((p-1)/2)). (End)
Pi/2 = Integral_{x = 0..oo} 1/(1 - x^2 + x^4) dx = (1 + 2/3 + 1/5) - (1/7 + 2/9 + 1/11) + (1/13 + 2/15 + 1/17) - .... - Peter Bala, Jul 22 2022
Equals arcsin(9/10) + sqrt(19)*Sum_{k >= 1} A106854(k-1)/(k*10^k) (see Bailey and Crandall, 2001). - Paolo Xausa, Jul 15 2024
Equals 2F1(1/2,1/2 ; 3/2; 1). - R. J. Mathar, Aug 20 2024
Pi/2 = [1;1,1/2,1/3,...,1/n,...] by Wallis's approximation. - Thomas Ordowski, Oct 19 2024
From Stefano Spezia, Oct 21 2024: (Start)
Equals Sum_{k>=0} 2^k/((2*k + 1)*binomial(2*k,k)) (see Finch).
Equals Limit_{n->oo} 2^(4*n)/((2*n + 1)*binomial(2*n,n)^2) (see Finch). (End)
Equals Integral_{x=-oo..oo} sech((2*x^3 + x^2 - 5*x)/(x^2 - 1)) dx. - Kritsada Moomuang, May 29 2025

A047201 Numbers not divisible by 5.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87
Offset: 1

Views

Author

Keywords

Comments

Original name was: Numbers that are congruent to {1, 2, 3, 4} mod 5.
More generally the sequence of numbers not divisible by some fixed integer m>=2 is given by a(n,m) = n-1+floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009
Complement of A008587. - Reinhard Zumkeller, Nov 30 2009

Crossrefs

Programs

Formula

G.f.: (x+2*x^2+3*x^3+4*x^4+4*x^5+3*x^6+2*x^7+x^8)/(1-x^4)^2 (not reduced). - Len Smiley
a(n) = 5+a(n-4).
G.f.: x*(1+x+x^2+x^3+x^4)/((1-x)*(1-x^4)).
a(n) = n-1+floor((n+3)/4). - Benoit Cloitre, Jul 11 2009
A011558(a(n))=1; A079998(a(n))=0. - Reinhard Zumkeller, Nov 30 2009
a(n) = floor((15*n-1)/12). - Gary Detlefs, Mar 07 2010
a(n) = A225496(n) for n <= 42. - Reinhard Zumkeller, May 09 2013
From Wesley Ivan Hurt, Jun 22 2015: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5), n>5.
a(n) = (10*n-5-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))/8. (End)
E.g.f.: 1 + (1/4)*(-cos(x) + (-3 + 5*x)*cosh(x) + sin(x) + (-2 + 5*x)*sinh(x)). - Stefano Spezia, Dec 01 2019
a(n) = floor((5*n-1)/4). - Wolfdieter Lang, Sep 30 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2-2/sqrt(5))*Pi/5 = A179290 * A019692 / 10. - Amiram Eldar, Dec 07 2021

Extensions

Comment from Lekraj Beedassy, Dec 17 2006 is now the current name. - Wesley Ivan Hurt, Jun 25 2015

A120070 Triangle of numbers used to compute the frequencies of the spectral lines of the hydrogen atom.

Original entry on oeis.org

3, 8, 5, 15, 12, 7, 24, 21, 16, 9, 35, 32, 27, 20, 11, 48, 45, 40, 33, 24, 13, 63, 60, 55, 48, 39, 28, 15, 80, 77, 72, 65, 56, 45, 32, 17, 99, 96, 91, 84, 75, 64, 51, 36, 19, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
Offset: 2

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The rationals r(m,n):=a(m,n)/(m^2*n^2), for m-1 >= n, else 0, are used to compute the frequencies of the spectral lines of the H-atom according to quantum theory: nu(m,n) = r(m,n)*c*R' with c*R'=3.287*10^15 s^(-1) an approximation for the Rydberg frequency. R' indicates, that the correction factor 1/(1+m_e/m_p), approximately 0.9995, with the masses for the electron and proton, has been used for the Rydberg constant R_infinity. c:=299792458 m/s is, per definition, the velocity of light in vacuo (see A003678).
In order to compute the wave length of the spectral lines approximately one uses the reciprocal rationals: lambda(m,n):= c/nu(m,n) = (1/r(m,n))*91.1961 nm. 1 nm = 10^{-9} m. For the corresponding energies one uses approximately E(m,n) = r(m,n)*13.599 eV (electron Volts).
The author was inspired by Dewdney's book to compile this table and related ones.
For the approximate frequencies, energies and wavelengths of the first members of the Lyman (n=1, m>=2), Balmer (n=2, m>=3), Paschen (n=3, m>=4), Brackett (n=4, m>=5) and Pfund (n=5, m>=6) series see the W. Lang link under A120072.
Frenicle wrote this as a(n+1) = A140978(n) - A133819(n-1). - Paul Curtz, Aug 19 2008
This triangle also has an interpretation related to particle spin. For proper offset such that T(0,0) = 3, then, where h-bar = h/(2*Pi) = A003676/A019692 (= The Dirac constant, also known as Planck's reduced constant) and Spin(n/2) = h-bar/2*sqrt(n(n+2)), it follows that: h-bar/2*sqrt(T(r,k)) = h-bar/2*sqrt(T(r,0) - T(k-1,0)) = sqrt((Spin((r+1)/2))^2 - (Spin(k/2))^2). For example, for r = k = 4, then h-bar/2*sqrt(11) = h-bar/2*sqrt(T(4,4)) = h-bar/2*sqrt(T(4,0) - T(3,0)) = sqrt(h-bar^2/4*T(4,0) - h-bar^2/4*T(3,0)) = sqrt(h-bar^2/4*35 - h-bar^2/4*24) = sqrt((Spin((4+1)/2))^2 - (Spin(4/2))^2); 35 = 5*(5+2) & 24 = 4*(4+2). - Raphie Frank, Dec 30 2012

Examples

			Triangle begins
  [ 3];
  [ 8, 5];
  [15, 12,  7];
  [24, 21, 16,  9];
  [35, 32, 27, 20, 11];
  ...
		

References

  • A. K. Dewdney, Reise in das Innere der Mathematik, Birkhäuser, Basel, 2000, pp. 148-154; engl.: A Mathematical Mystery Tour, John Wiley & Sons, N.Y., 1999.

Crossrefs

Row sums give A016061(n-1), n>=2.
Cf. A120072/A120073 numerator and denominator tables for rationals r(m, n).

Programs

  • Mathematica
    ColumnForm[Table[n^2 - k^2, {n, 2, 13}, {k, n - 1}], Center] (* Alonso del Arte, Oct 26 2011 *)
  • PARI
    nmax=400;a=vector(1+nmax*(nmax-1)\2);idx=1;for(n=2,nmax,for(k=1,n-1,a[idx]=n*n-k*k;idx++)) \\ Stanislav Sykora, Feb 17 2014
    
  • PARI
    T(n,k)=n^2-k^2;
    for (n=1,10,for(k=1,n-1, print1(T(n,k),", ")));
    \\ Joerg Arndt, Feb 23 2014

Formula

a(m,n) = m^2 - n^2 for m-1 >= n, otherwise 0.
G.f. for column n=1,2,...: x^(n+1)*((2*n+1)- (2*n-1)*x)/(1-x)^3.
G.f. for rationals r(m,n), n=1,2,...,10 see W. Lang link.
T(r,k) = T(r,0) - T(k-1,0), T(0,0) = 3. - Raphie Frank, Dec 27 2012

A019670 Decimal expansion of Pi/3.

Original entry on oeis.org

1, 0, 4, 7, 1, 9, 7, 5, 5, 1, 1, 9, 6, 5, 9, 7, 7, 4, 6, 1, 5, 4, 2, 1, 4, 4, 6, 1, 0, 9, 3, 1, 6, 7, 6, 2, 8, 0, 6, 5, 7, 2, 3, 1, 3, 3, 1, 2, 5, 0, 3, 5, 2, 7, 3, 6, 5, 8, 3, 1, 4, 8, 6, 4, 1, 0, 2, 6, 0, 5, 4, 6, 8, 7, 6, 2, 0, 6, 9, 6, 6, 6, 2, 0, 9, 3, 4, 4, 9, 4, 1, 7, 8, 0, 7, 0, 5, 6, 8
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

With an offset of zero, also the decimal expansion of Pi/30 ~ 0.104719... which is the average arithmetic area of the 0-winding sectors enclosed by a closed Brownian planar path, of a given length t, according to Desbois, p. 1. - Jonathan Vos Post, Jan 23 2011
Polar angle (or apex angle) of the cone that subtends exactly one quarter of the full solid angle. See comments in A238238. - Stanislav Sykora, Jun 07 2014
60 degrees in radians. - M. F. Hasler, Jul 08 2016
Volume of a quarter sphere of radius 1. - Omar E. Pol, Aug 17 2019
Also smallest positive zero of Sum_{k>=1} cos(k*x)/k = -log(2*|sin(x/2)|). Proof of this identity: Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i = sqrt(-1). - Jianing Song, Nov 09 2019
The area of a circle circumscribing a unit-area regular dodecagon. - Amiram Eldar, Nov 05 2020

Examples

			Pi/3 = 1.04719755119659774615421446109316762806572313312503527365831486...
From _Peter Bala_, Nov 16 2016: (Start)
Case n = 1. Pi/3 = 18 * Sum_{k >= 0} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ).
Using the methods of Borwein et al. we can find the following asymptotic expansion for the tails of this series: for N divisible by 6 there holds Sum_{k >= N/6} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ) ~ 1/N^3 + 6/N^5 + 1671/N ^7 - 241604/N^9 + ..., where the sequence [1, 0, 6, 0, 1671, 0, -241604, 0, ...] is the sequence of coefficients in the expansion of ((1/18)*cosh(2*x)/cosh(3*x)) * sinh(3*x)^2 = x^2/2! + 6*x^4/4! + 1671*x^6/6! - 241604*x^8/8! + .... Cf. A024235, A278080 and A278195. (End)
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.3, p. 489.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A013661 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), this sequence (m=6), A352125 (m=8), A094888 (m=10).

Programs

Formula

A third of A000796, a sixth of A019692, the square root of A100044.
Sum_{k >= 0} (-1)^k/(6k+1) + (-1)^k/(6k+5). - Charles R Greathouse IV, Sep 08 2011
Product_{k >= 1}(1-(6k)^(-2))^(-1). - Fred Daniel Kline, May 30 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/3 = Sum {k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k = 2F1(1/2,1/2;3/2;1/4). Similar series expansions hold for Pi^2 (A002388), Pi^3 (A091925) and Pi/(2*sqrt(2)) (A093954.)
The integer sequences A(n) := 4^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k ) both satisfy the second-order recurrence equation u(n) = (20*n^2 + 4*n + 1)*u(n-1) - 8*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/3 = 1 + 1/(24 - 8*3^3/(89 - 8*2*5^3/(193 - 8*3*7^3/(337 - ... - 8*(n - 1)*(2*n - 1)^3/((20*n^2 + 4*n + 1) - ... ))))). Cf. A002388 and A093954. (End)
Equals Sum_{k >= 1} arctan(sqrt(3)*L(2k)/L(4k)) where L=A000032. See also A005248 and A056854. - Michel Marcus, Mar 29 2016
Equals Product_{n >= 1} A016910(n) / A136017(n). - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=-oo..oo} sech(x)/3 dx. - Ilya Gutkovskiy, Jun 09 2016
From Peter Bala, Nov 16 2016: (Start)
Euler's series transformation applied to the series representation Pi/3 = Sum_{k >= 0} (-1)^k/(6*k + 1) + (-1)^k/(6*k + 5) given above by Greathouse produces the faster converging series Pi/3 = (1/2) * Sum_{n >= 0} 3^n*n!*( 1/(Product_{k = 0..n} (6*k + 1)) + 1/(Product_{k = 0..n} (6*k + 5)) ).
The series given above by Greathouse is the case n = 0 of the more general result Pi/3 = 9^n*(2*n)! * Sum_{k >= 0} (-1)^(k+n)*( 1/(Product_{j = -n..n} (6*k + 1 + 6*j)) + 1/(Product_{j = -n..n} (6*k + 5 + 6*j)) ) for n = 0,1,2,.... Cf. A003881. See the example section for notes on the case n = 1.(End)
Equals Product_{p>=5, p prime} p/sqrt(p^2-1). - Dimitris Valianatos, May 13 2017
Equals A019699/4 or A019693/2. - Omar E. Pol, Aug 17 2019
Equals Integral_{x >= 0} (sin(x)/x)^4 = 1/2 + Sum_{n >= 0} (sin(n)/n)^4, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} 1/(1 + x^6) dx. - Bernard Schott, Mar 12 2022
Pi/3 = -Sum_{n >= 1} i/(n*P(n, 1/sqrt(-3))*P(n-1, 1/sqrt(-3))), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximation Pi/3 = 1.04719755(06...) correct to 8 decimal places. - Peter Bala, Mar 16 2024
Equals Integral_{x >= 0} (2*x^2 + 1)/((x^2 + 1)*(4*x^2 + 1)) dx. - Peter Bala, Feb 12 2025

A091925 Decimal expansion of Pi^3.

Original entry on oeis.org

3, 1, 0, 0, 6, 2, 7, 6, 6, 8, 0, 2, 9, 9, 8, 2, 0, 1, 7, 5, 4, 7, 6, 3, 1, 5, 0, 6, 7, 1, 0, 1, 3, 9, 5, 2, 0, 2, 2, 2, 5, 2, 8, 8, 5, 6, 5, 8, 8, 5, 1, 0, 7, 6, 9, 4, 1, 4, 4, 5, 3, 8, 1, 0, 3, 8, 0, 6, 3, 9, 4, 9, 1, 7, 4, 6, 5, 7, 0, 6, 0, 3, 7, 5, 6, 6, 7, 0, 1, 0, 3, 2, 6, 0, 2, 8, 8, 6, 1, 9
Offset: 2

Views

Author

Mohammad K. Azarian, Mar 16 2004

Keywords

Comments

Surface area of the 6-dimensional unit sphere. - Stanislav Sykora, Nov 08 2013
Surface area of a sphere of diameter Pi equals the volume of the circumscribed cube. - Omar E. Pol, Dec 25 2013
Area of a circle of radius Pi. - Omar E. Pol, Jan 31 2016

Examples

			31.00627668029982017547631506710139520222528856588510769414453810380639...
		

Crossrefs

Cf. A000796, A002388, A058285 (continued fraction), A019670, A093954, A092731, A092735.

Programs

  • Magma
    R:= RealField(100); (Pi(R))^3; // G. C. Greubel, Mar 09 2018
  • Mathematica
    First@ RealDigits@ N[Pi^3, 120] (* Michael De Vlieger, Jan 31 2016 *)
  • PARI
    default(realprecision, 20080); x=Pi^3/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b091925.txt", n, " ", d)); \\ Harry J. Smith, Jun 22 2009
    

Formula

Sum_{k >= 0} binomial(2*k,k)/((2*k + 1)^3*16^k) = 7*Pi^3/216. (Kh. Hessami Pilehrood and T. Hessami Pilehrood).
From Peter Bala, Feb 05 2015: (Start)
The integer sequences A(n) := 2^n*(2*n + 1)!^3/n!^2 and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)^3*(1/16)^k ) both satisfy the second order recurrence equation u(n) = (160*n^4 + 128*n^3 + 144*n^2 + 2)*u(n-1) - 32*(n - 1)*(2*n - 1)^7*u(n-2). From this observation we can obtain the continued fraction expansion 7/216*Pi^3 = 1 + 2/(432 - 32*3^7/(4162 - 32*2*5^7/(17714 - ... - 32*(n - 1)*(2*n - 1)^7/((160*n^4 + 128*n^3 + 144*n^2 + 2) - ... )))). Cf. A002388, A019670 and A093954. (End)
From Peter Bala, Oct 31 2019: (Start)
Pi^3 = (1/7) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/6)^3 + 1/(n + 5/6)^3 ).
Pi^3 = (1/31) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/10)^3 - 1/(n + 3/10)^3 - 1/(n + 7/10)^3 + 1/(n + 9/10)^3 ). Cf. A019692, A092731 and A092735. (End)
Equals Integral_{x=-oo..oo} x^2/(exp(x/2) + exp(-x/2)) dx. - Amiram Eldar, May 21 2021

A086201 Decimal expansion of 1/(2*Pi).

Original entry on oeis.org

1, 5, 9, 1, 5, 4, 9, 4, 3, 0, 9, 1, 8, 9, 5, 3, 3, 5, 7, 6, 8, 8, 8, 3, 7, 6, 3, 3, 7, 2, 5, 1, 4, 3, 6, 2, 0, 3, 4, 4, 5, 9, 6, 4, 5, 7, 4, 0, 4, 5, 6, 4, 4, 8, 7, 4, 7, 6, 6, 7, 3, 4, 4, 0, 5, 8, 8, 9, 6, 7, 9, 7, 6, 3, 4, 2, 2, 6, 5, 3, 5, 0, 9, 0, 1, 1, 3, 8, 0, 2, 7, 6, 6, 2, 5, 3, 0, 8, 5, 9, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Comments

If a single hump of cycloid, with arc length 8*radius (generating circle), is inside a rectangle with width=2*radius and length=2*Pi*radius, then the radius must be 1/(2*Pi) (this sequence) to have (2/Pi), A060294, as semi arc of cycloid (arc = 4/Pi = A088538) and the rectangle... length = 1, width = 1/Pi. I suppose that in 3D geometry, gliding along a cycloid, in all directions around, from a point A at the height of 1/Pi, gives Pi*point B. - Eric Desbiaux, Dec 21 2008
Radius of circle having circumference 1. - Clark Kimberling, Jan 06 2014
The number of primitive Pythagorean triangles with hypotenuse less than N is approximately N/(2*Pi), found by Lehmer, cf. Knott link. - Frank Ellermann, Mar 27 2020

Examples

			0.15915494309189533576888376337251...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 493.

Crossrefs

Cf. A000796 (Pi), A019692 (2*Pi).

Programs

Extensions

Link corrected by Fred Daniel Kline, Jul 29 2015

A197739 Decimal expansion of least x>0 having sin(2x)=3*sin(6x).

Original entry on oeis.org

4, 7, 7, 6, 5, 8, 3, 0, 9, 0, 6, 2, 2, 5, 4, 6, 3, 9, 0, 8, 1, 9, 2, 8, 5, 5, 1, 2, 5, 7, 8, 7, 8, 8, 7, 7, 1, 2, 1, 7, 0, 7, 3, 4, 7, 5, 0, 5, 0, 0, 2, 7, 4, 5, 4, 7, 9, 8, 4, 9, 0, 6, 4, 6, 6, 0, 9, 5, 6, 0, 2, 2, 9, 5, 1, 9, 8, 8, 2, 2, 7, 6, 9, 3, 6, 9, 5, 8, 0, 1, 2, 9, 2, 8, 1, 4, 0, 3, 6
Offset: 0

Views

Author

Clark Kimberling, Oct 18 2011

Keywords

Comments

This constant is the least x>0 for which the function f(x)=(sin(x))^2+(cos(3x))^2 has its maximal value. Least positive solutions of the equations f(x)=m/2, f(x)=m/3, f(x)=1, and f(x)=1/2 are given by sequences shown in the guide below.
In general, suppose that b and c are distinct positive real numbers. Let f(x)=(sin(bx))^2+cos((cx))^2. The extrema of f are the solutions of b*sin(2bx)=c*sin(2cx).
In the following guide, constants x given by the sequences (or explicit number) listed for each b,c are, in this order:
(1) least x>0 such that f(x)=(its maximum, m)
(2) m, the maximum of f
(3) least x>0 having f(x)=m/2
(4) least x>0 having f(x)=m/3
(5) least x>0 having f(x)=1
(6) least x>0 having f(x)=1/2
...
(b,c)=(1,2): A195700, x=25/16, A197589, A197591,
(b,c)=(1,3): A197739, A197588, A197590, A197755,
(b,c)=(1,4): A197758, A197759, A197760, A197761,
A019692 (x=pi/5), A003881
(b,c)=(1,pi): A197821, A197822, A197823, A197824,
(b,c)=(1,2*pi): A197827, A197828, A197829, A197830,
(b,c)=(1,3*pi): A197833, A197834, A197835, A197836,

Examples

			0.47765830906225463908192855125787887712170734750500...
		

Crossrefs

Programs

  • Mathematica
    b = 1; c = 3;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .47, .48}, WorkingPrecision -> 110]
    RealDigits[r]  (* A197739 *)
    m = s[r]
    RealDigits[m]  (* A197588 *)
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197590 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, 0.8, 0.9}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197755 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110]
    RealDigits[t]  (* A003881 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, .9, .93}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197488 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    RealDigits[ ArcTan[ Sqrt[ 2-Sqrt[3] ] ], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)

A019699 Decimal expansion of 2*Pi/15 = (4*Pi/3)/10.

Original entry on oeis.org

4, 1, 8, 8, 7, 9, 0, 2, 0, 4, 7, 8, 6, 3, 9, 0, 9, 8, 4, 6, 1, 6, 8, 5, 7, 8, 4, 4, 3, 7, 2, 6, 7, 0, 5, 1, 2, 2, 6, 2, 8, 9, 2, 5, 3, 2, 5, 0, 0, 1, 4, 1, 0, 9, 4, 6, 3, 3, 2, 5, 9, 4, 5, 6, 4, 1, 0, 4, 2, 1, 8, 7, 5, 0, 4, 8, 2, 7, 8, 6, 6, 4, 8, 3, 7, 3, 7, 9, 7, 6, 7, 1, 2, 2, 8, 2, 2, 7, 5
Offset: 0

Views

Author

Keywords

Comments

With offset 1, decimal expansion of 4*Pi/3, the volume of a sphere of radius 1. - Omar E. Pol, Aug 27 2007, Sep 25 2013
2*Pi/15 is the common value of the base angles of the isosceles triangle formed at the common vertex of the figure obtained by gluing a hexagon and a pentagon, both regular, along a common side, as shown in the CNRS link. - Michel Marcus, Mar 06 2015
This is also the surface area (in some cubic length unit (l.u.)) of a sphere with a central cylinder symmetrical hole of length 2 l.u. Thanks to Sven Heinemeyer for reminding me of this classical astonishing result. See e.g., Bild der Wissenschaft, Januar 1964, p. 75, or the Gardner reference, Problem 7 on p. 51. In two dimensions things are different. See A258146. - Wolfdieter Lang, May 31 2015

Examples

			2*Pi/15 = 0.418879020478639098461685784437267...
4*Pi/3 = 4.18879020478639098461685784437267... - _Omar E. Pol_, Sep 25 2013
		

References

  • Bild der Wissenschaft, Januar 1964.
  • Martin Gardner, Mathematische Rätsel und Probleme, 3. Auflage, Friedr. Vieweg + Sohn, Braunschweig, 1975, p. 51 (in German). In English: Mathematical Puzzles and Diversions from "Scientific American", Simon and Schuster, N. Y. 1959/1961.

Crossrefs

Programs

Formula

(1/10)*volume of the unit sphere in R^3 = (1/10)*Pi^(3/2)/gamma(1+3/2). - Benoit Cloitre, Jun 19 2003

A092731 Decimal expansion of Pi^5.

Original entry on oeis.org

3, 0, 6, 0, 1, 9, 6, 8, 4, 7, 8, 5, 2, 8, 1, 4, 5, 3, 2, 6, 2, 7, 4, 1, 3, 1, 0, 0, 4, 3, 4, 3, 5, 6, 0, 6, 4, 8, 0, 3, 0, 0, 7, 0, 6, 6, 2, 8, 0, 7, 4, 9, 9, 0, 5, 5, 3, 4, 9, 2, 4, 4, 3, 6, 8, 6, 2, 3, 4, 9, 9, 2, 1, 3, 3, 6, 1, 4, 0, 2, 4, 4, 8, 5, 7, 8, 3, 5, 0, 0, 4, 7, 3, 5, 0, 5, 1, 1, 8, 9, 0, 4, 0, 3, 7
Offset: 3

Views

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Examples

			306.0196847852814532
		

Crossrefs

Programs

Formula

From Peter Bala, Oct 31 2019: (Start)
Pi^5 = (4!/(2*305)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/6)^5 + 1/(n + 5/6)^5 ), where 305 = ((3^5 + 1)/4)*A000364(2) = A002437(2).
Pi^5 = (4!/(2*3905)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/10)^5 - 1/(n + 3/10)^5 - 1/(n + 7/10)^5 + 1/(n + 9/10)^5 ), where 3905 = ((5^5 - 1)/4)*A000364(2).
Cf. A019692, A091925 and A092735. (End)
Showing 1-10 of 69 results. Next