cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A019692 Decimal expansion of 2*Pi.

Original entry on oeis.org

6, 2, 8, 3, 1, 8, 5, 3, 0, 7, 1, 7, 9, 5, 8, 6, 4, 7, 6, 9, 2, 5, 2, 8, 6, 7, 6, 6, 5, 5, 9, 0, 0, 5, 7, 6, 8, 3, 9, 4, 3, 3, 8, 7, 9, 8, 7, 5, 0, 2, 1, 1, 6, 4, 1, 9, 4, 9, 8, 8, 9, 1, 8, 4, 6, 1, 5, 6, 3, 2, 8, 1, 2, 5, 7, 2, 4, 1, 7, 9, 9, 7, 2, 5, 6, 0, 6, 9, 6, 5, 0, 6, 8, 4, 2, 3, 4, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Pi/5 or 2*Pi/10 is the expected surface area containing completely a Brownian curve (trajectory) on a plane. - Lekraj Beedassy, Jul 28 2005
Bob Palais considers this a more fundamental constant than Pi, see the Palais reference and link. - Jonathan Vos Post, Sep 10 2010
The Persian mathematician Jamshid al-Kashi seems to have been the first to use the circumference divided by the radius as the circle constant. In Treatise on the Circumference published 1424 he calculated the circumference of a unit circle to 9 sexagesimal places. - Peter Harremoës, John W. Nicholson, Aug 02 2012
"Proponents of a new mathematical constant tau (τ), equal to two times π, have argued that a constant based on the ratio of a circle's circumference to its radius rather than to its diameter would be more natural and would simplify many formulas" (from Wikipedia). - Jonathan Sondow, Aug 15 2012
The constant 2*Pi appears in the formula for the period T of a simple gravity pendulum. For small angles this period is given by Christiaan Huygens’s law, i.e., T = 2*Pi*sqrt(L/g), see for more information A223067. - Johannes W. Meijer, Mar 14 2013
There are seven consecutive nines at positions 762 to 768. - Roland Kneer, Jul 05 2013
Volume of a cylinder in which a sphere of radius 1 can be inscribed. - Omar E. Pol, Sep 25 2013
2*Pi is also the surface area of a sphere whose diameter equals the square root of 2. More generally, x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 18 2013
From Bernard Schott, Jan 31 2020: (Start)
Also, (2*Pi)*a^2 is the area of the deltoid (an hypocycloid with three cusps) whose Cartesian parametrization is:
x = a * (2*cos(t) + cos(2*t)),
y = a * (2*sin(t) - sin(2*t)).
The length of this deltoid is 16*a. See the curve at the Mathcurve link. (End)
Pi/5 = 0.1 * 2*Pi is the mean area of the plane triangles formed by 3 points independently and uniformly chosen at random on the surface of a unit-radius sphere. - Amiram Eldar, Aug 06 2020

Examples

			6.283185307179586476925286766559005768394338798750211641949889184615632...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4, p. 17.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 69.

Crossrefs

Cf. A058291 (continued fraction).
Cf. A093828 (astroid), A180434 (loop of strophoid), A197723 (cardioid).

Programs

  • Julia
    using Nemo
    RR = RealField(334)
    tau = const_pi(RR) + const_pi(RR)
    tau |> println # Peter Luschny, Mar 14 2018
    
  • Magma
    R:= RealField(100); 2*Pi(R); // G. C. Greubel, Mar 08 2018
    
  • Mathematica
    RealDigits[N[2 Pi, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
  • PARI
    default(realprecision, 20080); x=2*Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019692.txt", n, " ", d)); \\ Harry J. Smith, May 31 2009
    
  • Python
    # Use some guard digits when computing.
    # BBP formula P(1, 16, 8, (0, 8, 4, 4, 0, 0, -1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPtau(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(16)
        for k in range(n):
            ek = dec(8 * k)
            s += f * ( dec(8) / (ek + 2) + dec(4) / (ek + 3)
                     + dec(4) / (ek + 4) - dec(1) / (ek + 7))
            f /= g
        return s
    print(BBPtau(200))  # Peter Luschny, Nov 03 2023

Formula

e^(Zeta'(0)/Zeta(0)) = 2*Pi. - Peter Luschny, Jun 17 2018
From Peter Bala, Oct 30 2019: (Start)
2*Pi = Sum_{n >= 0} (-1)^n*( 1/(n + 1/6) + 1/(n + 5/6) ).
2*Pi = Sum_{n >= 0} (-1)^n*( 1/(n + 1/10) - 1/(n + 3/10) - 1/(n + 7/10) + 1/(n + 9/10) ). Cf. A091925 and A244979. (End)
From Amiram Eldar, Aug 06 2020: (Start)
Equals Gamma(1/6)*Gamma(5/6).
Equals Integral_{x=0..oo} log(1 + 1/x^6) dx.
Equals Integral_{x=0..oo} log(1 + 4/x^2) dx.
Equals Integral_{x=-oo..oo} exp(x/6)/(exp(x) + 1) dx.
Equals Sum_{k>=0} 1/((k + 1/4)*(k + 3/4)). (End)
Equals 4*Integral_{x=0..1} 1/sqrt(1 - x^2) dx (see Finch). - Stefano Spezia, Oct 19 2024

A019670 Decimal expansion of Pi/3.

Original entry on oeis.org

1, 0, 4, 7, 1, 9, 7, 5, 5, 1, 1, 9, 6, 5, 9, 7, 7, 4, 6, 1, 5, 4, 2, 1, 4, 4, 6, 1, 0, 9, 3, 1, 6, 7, 6, 2, 8, 0, 6, 5, 7, 2, 3, 1, 3, 3, 1, 2, 5, 0, 3, 5, 2, 7, 3, 6, 5, 8, 3, 1, 4, 8, 6, 4, 1, 0, 2, 6, 0, 5, 4, 6, 8, 7, 6, 2, 0, 6, 9, 6, 6, 6, 2, 0, 9, 3, 4, 4, 9, 4, 1, 7, 8, 0, 7, 0, 5, 6, 8
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

With an offset of zero, also the decimal expansion of Pi/30 ~ 0.104719... which is the average arithmetic area of the 0-winding sectors enclosed by a closed Brownian planar path, of a given length t, according to Desbois, p. 1. - Jonathan Vos Post, Jan 23 2011
Polar angle (or apex angle) of the cone that subtends exactly one quarter of the full solid angle. See comments in A238238. - Stanislav Sykora, Jun 07 2014
60 degrees in radians. - M. F. Hasler, Jul 08 2016
Volume of a quarter sphere of radius 1. - Omar E. Pol, Aug 17 2019
Also smallest positive zero of Sum_{k>=1} cos(k*x)/k = -log(2*|sin(x/2)|). Proof of this identity: Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i = sqrt(-1). - Jianing Song, Nov 09 2019
The area of a circle circumscribing a unit-area regular dodecagon. - Amiram Eldar, Nov 05 2020

Examples

			Pi/3 = 1.04719755119659774615421446109316762806572313312503527365831486...
From _Peter Bala_, Nov 16 2016: (Start)
Case n = 1. Pi/3 = 18 * Sum_{k >= 0} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ).
Using the methods of Borwein et al. we can find the following asymptotic expansion for the tails of this series: for N divisible by 6 there holds Sum_{k >= N/6} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ) ~ 1/N^3 + 6/N^5 + 1671/N ^7 - 241604/N^9 + ..., where the sequence [1, 0, 6, 0, 1671, 0, -241604, 0, ...] is the sequence of coefficients in the expansion of ((1/18)*cosh(2*x)/cosh(3*x)) * sinh(3*x)^2 = x^2/2! + 6*x^4/4! + 1671*x^6/6! - 241604*x^8/8! + .... Cf. A024235, A278080 and A278195. (End)
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.3, p. 489.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A013661 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), this sequence (m=6), A352125 (m=8), A094888 (m=10).

Programs

Formula

A third of A000796, a sixth of A019692, the square root of A100044.
Sum_{k >= 0} (-1)^k/(6k+1) + (-1)^k/(6k+5). - Charles R Greathouse IV, Sep 08 2011
Product_{k >= 1}(1-(6k)^(-2))^(-1). - Fred Daniel Kline, May 30 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/3 = Sum {k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k = 2F1(1/2,1/2;3/2;1/4). Similar series expansions hold for Pi^2 (A002388), Pi^3 (A091925) and Pi/(2*sqrt(2)) (A093954.)
The integer sequences A(n) := 4^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k ) both satisfy the second-order recurrence equation u(n) = (20*n^2 + 4*n + 1)*u(n-1) - 8*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/3 = 1 + 1/(24 - 8*3^3/(89 - 8*2*5^3/(193 - 8*3*7^3/(337 - ... - 8*(n - 1)*(2*n - 1)^3/((20*n^2 + 4*n + 1) - ... ))))). Cf. A002388 and A093954. (End)
Equals Sum_{k >= 1} arctan(sqrt(3)*L(2k)/L(4k)) where L=A000032. See also A005248 and A056854. - Michel Marcus, Mar 29 2016
Equals Product_{n >= 1} A016910(n) / A136017(n). - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=-oo..oo} sech(x)/3 dx. - Ilya Gutkovskiy, Jun 09 2016
From Peter Bala, Nov 16 2016: (Start)
Euler's series transformation applied to the series representation Pi/3 = Sum_{k >= 0} (-1)^k/(6*k + 1) + (-1)^k/(6*k + 5) given above by Greathouse produces the faster converging series Pi/3 = (1/2) * Sum_{n >= 0} 3^n*n!*( 1/(Product_{k = 0..n} (6*k + 1)) + 1/(Product_{k = 0..n} (6*k + 5)) ).
The series given above by Greathouse is the case n = 0 of the more general result Pi/3 = 9^n*(2*n)! * Sum_{k >= 0} (-1)^(k+n)*( 1/(Product_{j = -n..n} (6*k + 1 + 6*j)) + 1/(Product_{j = -n..n} (6*k + 5 + 6*j)) ) for n = 0,1,2,.... Cf. A003881. See the example section for notes on the case n = 1.(End)
Equals Product_{p>=5, p prime} p/sqrt(p^2-1). - Dimitris Valianatos, May 13 2017
Equals A019699/4 or A019693/2. - Omar E. Pol, Aug 17 2019
Equals Integral_{x >= 0} (sin(x)/x)^4 = 1/2 + Sum_{n >= 0} (sin(n)/n)^4, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} 1/(1 + x^6) dx. - Bernard Schott, Mar 12 2022
Pi/3 = -Sum_{n >= 1} i/(n*P(n, 1/sqrt(-3))*P(n-1, 1/sqrt(-3))), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximation Pi/3 = 1.04719755(06...) correct to 8 decimal places. - Peter Bala, Mar 16 2024
Equals Integral_{x >= 0} (2*x^2 + 1)/((x^2 + 1)*(4*x^2 + 1)) dx. - Peter Bala, Feb 12 2025

A102753 Decimal expansion of (Pi^2)/2.

Original entry on oeis.org

4, 9, 3, 4, 8, 0, 2, 2, 0, 0, 5, 4, 4, 6, 7, 9, 3, 0, 9, 4, 1, 7, 2, 4, 5, 4, 9, 9, 9, 3, 8, 0, 7, 5, 5, 6, 7, 6, 5, 6, 8, 4, 9, 7, 0, 3, 6, 2, 0, 3, 9, 5, 3, 1, 3, 2, 0, 6, 6, 7, 4, 6, 8, 8, 1, 1, 0, 0, 2, 2, 4, 1, 1, 2, 0, 9, 6, 0, 2, 6, 2, 1, 5, 0, 0, 8, 8, 6, 7, 0, 1, 8, 5, 9, 2, 7, 6, 1, 1, 5, 9, 1, 2, 0, 1
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 10 2005

Keywords

Comments

Also equals the area under the peak-shaped even function f(x)=x/sinh(x).
Proof: For the upper half of the integral, write f(x) = 2x*exp(-x)/(1-exp(-2x)) = sum_{k=1..infinity} 2x*exp(-(2k-1)x) and integrate term by term from zero to infinity. - Stanislav Sykora, Nov 01 2013
Volume of the 4-dimensional unit sphere; the volume of the n-dimensional unit sphere is Pi^(n/2)/gamma(n/2+1) (see n-ball link and A164103). - Rick L. Shepherd, Jun 22 2017
Pi^2/2 is the squared side-length of a square with diagonal Pi. - Wesley Ivan Hurt, Jan 28 2022

Examples

			4.9348022005446793094172454999380755676568497036203953132066746881100\ 224112096026215008867018592761159120129568870115720388....
		

References

  • J. Rivaud, Analyse, Séries, Equations différentielles, Mathématiques Supérieures et Spéciales, Premier Cycle Universitaire, Vuibert, 1981, Exercice 2, p. 135.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Middlesex, England: Penguin Books, 1986, p. 53.

Crossrefs

Programs

Formula

Equals psi_1(1/2), where psi_1(x) is the second logarithmic derivative of GAMMA(x).
Equals the volume of revolution of the sine or cosine curve for one half period, Integral_{0,Pi} Sin(x)^2 dx. - Robert G. Wilson v, Dec 15 2005
Equals Sum_{k >=1} 4^k/(k^2*binomial(2*k,k)) [Amdeberhan, Sprugnoli]. - R. J. Mathar, Sep 28 2007
Equals 4*Sum_{k >=1} 1/(2k-1)^2 [Wells].
From Peter Bala, Nov 05 2019: (Start)
Pi^2/2 = Integral_{x = 0..inf} cosh(x)*x^2/sinh(x)^2 dx.
Pi^2/2 = 5*sum_{k >= 0} binomial(2*k,k)(-1/16)^k*1/(2*k+1)^2.
Pi^2/2 = 10*Integral_{x = 0..1/2} 1/x*log(x + sqrt(1 + x^2)) dx. (End)
Pi^2/20 = 0.1 * Pi^2/2 = Sum_{k>=1} 1/A026424(k)^2. - Amiram Eldar, Aug 17 2020
Conjecture: Pi^2/2 = Sum_{n = -oo..oo} ( cos(Pi*sqrt(n^2+1)) - cos(Pi*n) ) (using the Eisenstein summation convention). - Peter Bala, Oct 08 2021
Pi^2/2 = Integral_{x = -oo..oo} x/sinh(x) dx (see Rivaud reference). - Bernard Schott, Jan 28 2022

A019693 Decimal expansion of 2*Pi/3.

Original entry on oeis.org

2, 0, 9, 4, 3, 9, 5, 1, 0, 2, 3, 9, 3, 1, 9, 5, 4, 9, 2, 3, 0, 8, 4, 2, 8, 9, 2, 2, 1, 8, 6, 3, 3, 5, 2, 5, 6, 1, 3, 1, 4, 4, 6, 2, 6, 6, 2, 5, 0, 0, 7, 0, 5, 4, 7, 3, 1, 6, 6, 2, 9, 7, 2, 8, 2, 0, 5, 2, 1, 0, 9, 3, 7, 5, 2, 4, 1, 3, 9, 3, 3, 2, 4, 1, 8, 6, 8, 9, 8, 8, 3, 5, 6, 1, 4, 1, 1, 3, 7
Offset: 1

Views

Author

Keywords

Comments

Volume between a cylinder and the inscribed sphere of radius 1. - Omar E. Pol, Sep 25 2013
(2/3)*Pi is also the surface area of a sphere whose diameter equals the square root of 2/3. More generally, x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Jun 18 2018
Volume of a hemisphere of radius 1. - Omar E. Pol, Aug 17 2019
Angle in radians between two vectors of equal magnitude and originating from the same point whose vector sum also has the same magnitude. - Stefano Spezia, Jun 30 2025

Examples

			2.094395102393195492308428922186335256131446... - _Omar E. Pol_, Sep 25 2013
		

Crossrefs

Programs

Formula

Equals 5*A019699. - Omar E. Pol, Aug 17 2019
Equals arccos(-1/2). - Amiram Eldar, Aug 12 2020
Equals Integral_{x=-oo..oo} 1/(1 + x^6) dx. - Stefano Spezia, Mar 05 2022
Equals Integral_{x=0..2*Pi} 1/(5 - 4*cos(x)) dx. - Kritsada Moomuang, May 22 2025

A232808 Decimal expansion of the surface area of a 3D sphere with unit volume.

Original entry on oeis.org

4, 8, 3, 5, 9, 7, 5, 8, 6, 2, 0, 4, 9, 4, 0, 8, 9, 2, 2, 1, 5, 0, 9, 0, 0, 5, 3, 9, 9, 1, 7, 8, 5, 4, 8, 1, 6, 8, 3, 3, 8, 4, 2, 2, 1, 6, 9, 7, 1, 5, 8, 4, 6, 6, 7, 0, 7, 6, 8, 7, 6, 2, 2, 6, 1, 3, 6, 8, 5, 2, 8, 9, 5, 1, 7, 1, 4, 3, 5, 8, 2, 2, 7, 3, 8, 4, 6
Offset: 1

Views

Author

Stanislav Sykora, Nov 30 2013

Keywords

Comments

More generally, the ratio (surface)/(volume)^(2/3), characteristic of the shape of a bounded 3D body, which is invariant under linear scaling and known as the surface index. Its common value for all spheres is the smallest possible among all closed 3D bodies (for a cube, for example, it is exactly 6.0).

Examples

			4.83597586204940892215090053991785481683384221697158466707687622613685...
		

Crossrefs

Cf. A000796 (Pi), A019673 (Pi/6); other sphere metrics: A019694, A019699, A087198, A087199.

Programs

  • Mathematica
    RealDigits[(36 Pi)^(1/3), 10, 90][[1]] (* Bruno Berselli, Dec 01 2013 *)

Formula

(36*Pi)^(1/3) = 6*A019673^(1/3).

A374772 Decimal expansion of the upper bound of the density of sphere packing in the Euclidean 3-space resulting from the dodecahedral conjecture.

Original entry on oeis.org

7, 5, 4, 6, 9, 7, 3, 9, 9, 3, 3, 7, 4, 0, 5, 8, 3, 0, 3, 9, 1, 6, 5, 2, 1, 0, 5, 9, 9, 0, 2, 2, 9, 3, 3, 1, 3, 4, 2, 4, 3, 2, 1, 9, 2, 1, 4, 5, 9, 4, 3, 4, 2, 8, 4, 7, 6, 5, 8, 3, 5, 9, 2, 0, 5, 6, 1, 5, 8, 6, 6, 4, 5, 0, 7, 3, 0, 3, 9, 0, 5, 3, 0, 3, 3, 2, 7, 4, 6, 8
Offset: 0

Views

Author

Paolo Xausa, Jul 19 2024

Keywords

Comments

See A374753 for more information on the dodecahedral conjecture.
Also isoperimetric quotient (see A381671 for definition) of a regular dodecahedron. - Paolo Xausa, May 19 2025

Examples

			0.7546973993374058303916521059902293313424321921459...
		

Crossrefs

Cf. A374753 (dodecahedral conjecture), A374755 (strong dodecahedral conjecture), A374771, A374837, A374838.

Programs

  • Mathematica
    First[RealDigits[Pi*Sqrt[5 + Sqrt[5]]/(15*Sqrt[10]*(Sqrt[5] - 2)), 10, 100]]
  • PARI
    Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals (4/3)*Pi/A374753 = 10*A019699/A374753.
Equals Pi*sqrt(5 + sqrt(5))/(15*sqrt(10)*(sqrt(5) - 2)).
Equals 4*Pi/A374755.
Equals 36*Pi*A102769^2/(A131595^3). - Paolo Xausa, May 19 2025

A164106 Decimal expansion of 16*Pi^3/105.

Original entry on oeis.org

4, 7, 2, 4, 7, 6, 5, 9, 7, 0, 3, 3, 1, 4, 0, 1, 1, 6, 9, 5, 9, 6, 3, 9, 0, 8, 6, 7, 3, 6, 7, 8, 3, 1, 6, 4, 9, 8, 6, 2, 9, 0, 1, 1, 1, 4, 8, 0, 1, 5, 4, 0, 2, 2, 0, 0, 6, 0, 1, 2, 0, 0, 9, 2, 0, 0, 8, 5, 9, 3, 5, 1, 1, 2, 3, 2, 8, 6, 9, 4, 9, 1, 4, 3, 8, 7, 3, 5, 3, 9, 5, 4, 4, 4, 2, 4, 9, 3, 2, 4, 6, 5, 2, 2, 0
Offset: 1

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Volume of the 7-dimensional unit sphere.

Examples

			Equals 4.72476597033140116959639086736783164986290111...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[16*Pi^3/105, 10, 100][[1]] (* G. C. Greubel, Apr 09 2017 *)
  • PARI
    16*Pi^3/105 \\ G. C. Greubel, Apr 09 2017

Formula

Equals 16*A091925/105 = A164107/7 .

A164108 Decimal expansion of Pi^4/24.

Original entry on oeis.org

4, 0, 5, 8, 7, 1, 2, 1, 2, 6, 4, 1, 6, 7, 6, 8, 2, 1, 8, 1, 8, 5, 0, 1, 3, 8, 6, 2, 0, 2, 9, 3, 7, 9, 6, 3, 5, 4, 0, 5, 3, 1, 6, 0, 6, 9, 6, 9, 5, 2, 2, 5, 9, 0, 3, 8, 1, 1, 1, 6, 0, 8, 0, 7, 9, 1, 5, 4, 5, 2, 3, 1, 0, 7, 0, 1, 1, 3, 3, 1, 7, 4, 5, 8, 8, 4, 1, 1, 1, 3, 4, 7, 8, 1, 3, 7, 4, 6, 8, 9, 6, 2, 3, 7, 1
Offset: 1

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Volume of the 8-dimensional unit sphere.

Examples

			4.0587121264167682181850138620293796354053160696952259038...
		

Crossrefs

Programs

Formula

Equals A164109/8 = A092425/24 = A072691*A102753.
Pi^4/240 = -Integral_{x=0..1} log(1-x)*log(1+x)^2/x dx (Vălean, 2017). - Amiram Eldar, Mar 26 2022

A374753 Decimal expansion of the volume of a regular dodecahedron having unit inradius.

Original entry on oeis.org

5, 5, 5, 0, 2, 9, 1, 0, 2, 8, 5, 1, 5, 5, 1, 0, 2, 6, 9, 0, 7, 0, 4, 3, 2, 1, 1, 3, 6, 6, 1, 8, 3, 9, 2, 4, 0, 7, 3, 7, 5, 9, 8, 2, 1, 2, 8, 8, 2, 4, 9, 8, 8, 6, 7, 1, 1, 1, 7, 5, 3, 8, 6, 3, 5, 3, 8, 8, 3, 6, 7, 0, 7, 3, 3, 3, 2, 4, 5, 2, 3, 6, 4, 8, 2, 9, 3, 8, 8, 9
Offset: 1

Views

Author

Paolo Xausa, Jul 19 2024

Keywords

Comments

The dodecahedral conjecture (proved in 1988 by Thomas C. Hales and Sean McLaughlin, see links) states that, in any packing of unit spheres in the Euclidean 3-space, every Voronoi cell has volume at least equal to this value.

Examples

			5.55029102851551026907043211366183924073759821288...
		

Crossrefs

Cf. A019699, A374755 (strong dodecahedral conjecture), A374772 (density).

Programs

  • Mathematica
    First[RealDigits[10*Sqrt[130 - 58*Sqrt[5]], 10, 100]]

Formula

Equals (4/3)*Pi/A374772 = 10*A019699/A374772.
Equals 10*sqrt(130 - 58*sqrt(5)).
Equals A374755/3.

A164086 Beatty sequence for 4*Pi/3 = 4.1887902... .

Original entry on oeis.org

4, 8, 12, 16, 20, 25, 29, 33, 37, 41, 46, 50, 54, 58, 62, 67, 71, 75, 79, 83, 87, 92, 96, 100, 104, 108, 113, 117, 121, 125, 129, 134, 138, 142, 146, 150, 154, 159, 163, 167, 171, 175, 180, 184, 188, 192, 196, 201, 205, 209, 213, 217, 222, 226, 230, 234, 238, 242
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 11 2009

Keywords

Comments

a(n) = A109238(n) for n <= 20;
complement of A164087;
a(n) = A164088(A164087(n)) and A164088(a(n)) = A164087(n);
a(A000578(n)) = A066645(n).

Examples

			a(3^3) = a(27) = 113 = (integer part of volume of sphere with radius=3) = A066645(3).
		

Crossrefs

Programs

Formula

a(n) = floor(4*n*Pi/3).
Showing 1-10 of 22 results. Next