cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020338 Doublets: base-10 representation is the juxtaposition of two identical strings.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 1010, 1111, 1212, 1313, 1414, 1515, 1616, 1717, 1818, 1919, 2020, 2121, 2222, 2323, 2424, 2525, 2626, 2727, 2828, 2929, 3030, 3131, 3232, 3333, 3434, 3535, 3636, 3737, 3838, 3939, 4040, 4141, 4242, 4343, 4444, 4545, 4646
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. concatenation of n and k*n: this sequence (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • GAP
    Flat(List([1..2],d->List([10^(d-1)..10^d-1],n->(10^d+1)*n))); # Muniru A Asiru, Mar 31 2018
  • Haskell
    a020338 n = read (ns ++ ns) :: Integer  where ns = show n
    -- Reinhard Zumkeller, Jun 07 2015
    
  • Magma
    [Seqint(Intseq(n) cat Intseq(n)): n in [1..46]]; // Bruno Berselli, Mar 20 2013
    
  • Maple
    seq(seq((10^d+1)*n, n = 10^(d-1)..10^d-1),d=1..3); # Robert Israel, Jan 02 2015
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn1=IntegerDigits[n]}, FromDigits[Join[idn, idn1]]];Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n,n)); \\ Michel Marcus, Sep 10 2015
    
  • Sage
    [int(str(n)+str(n)) for n in range(1,47)] # Danny Rorabaugh, Oct 10 2015
    

Formula

a(n) = n*10^(A004216(n)+1) + n. - Reinhard Zumkeller, Aug 11 2007
G.f.: 11*x/(1-x)^2 - Sum_{d >= 1} 9*x^(10^d)*(100^d*x-10^d*x-100^d)/(1-x)^2. - Robert Israel, Jan 02 2015
a(n) = n || n. (Where "||" denotes "concatenate". See link "Concatenation".) - Halfdan Skjerning, Apr 01 2018