cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A260831 Primes having only {5, 7, 9} as digits.

Original entry on oeis.org

5, 7, 59, 79, 97, 557, 577, 599, 757, 797, 977, 997, 5557, 5779, 7559, 7577, 7757, 7759, 55579, 55799, 55997, 57557, 57559, 57977, 59557, 59779, 59797, 59957, 59999, 75557, 75577, 75797, 75979, 75997, 77557, 77797, 77977, 77999, 79559, 79579, 79757, 79777
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2015

Keywords

Comments

A020467, A020468 and A020471 are subsequences.
Subsequence of A030096.

Crossrefs

Cf. similar sequences listed in A260827.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [5, 7, 9]];
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {5, 7, 9}] == {} &]

A260227 Primes having only {3, 5, 9} as digits.

Original entry on oeis.org

3, 5, 53, 59, 353, 359, 593, 599, 953, 3359, 3533, 3539, 3559, 3593, 5333, 5393, 5399, 5939, 5953, 9533, 9539, 33353, 33359, 33533, 33599, 35339, 35353, 35393, 35533, 35593, 35933, 35993, 35999, 39359, 39953, 53353, 53359, 53593, 53939, 53959, 53993
Offset: 1

Views

Author

Vincenzo Librandi, Jul 22 2015

Keywords

Comments

A020462 and A020468 are subsequences.

Crossrefs

Cf. similar sequences listed in A260223.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [3, 5, 9]];
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {3, 5, 9}]=={} &]
    Select[Table[FromDigits/@Tuples[{3,5,9},n],{n,5}]//Flatten,PrimeQ] (* Harvey P. Dale, Sep 07 2018 *)

A385781 Primes having only {1, 5, 9} as digits.

Original entry on oeis.org

5, 11, 19, 59, 151, 191, 199, 599, 911, 919, 991, 1151, 1511, 1559, 1951, 1999, 5119, 5519, 5591, 9151, 9199, 9511, 9551, 11119, 11159, 11519, 11551, 11959, 15199, 15511, 15551, 15559, 15919, 15959, 15991, 19559, 19919, 19991, 51151, 51199, 51511, 51551
Offset: 1

Views

Author

Jason Bard, Jul 13 2025

Keywords

Crossrefs

Supersequence of A020453, A020457, A020468.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 5, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 5, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("159"), 41))) # uses function/imports in A385776
    

A385786 Primes having only {2, 5, 9} as digits.

Original entry on oeis.org

2, 5, 29, 59, 229, 599, 929, 2999, 9929, 22229, 22259, 25229, 25999, 29599, 29959, 52259, 52529, 52999, 55229, 55259, 55529, 59929, 59999, 92959, 95929, 95959, 99259, 99529, 99559, 99929, 225299, 225529, 229529, 252559, 255259, 259229, 295259, 522229, 522259
Offset: 1

Views

Author

Jason Bard, Jul 13 2025

Keywords

Crossrefs

Supersequence of A020460, A020468.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 5, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 5, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("259"), 41))) # uses function/imports in A385776
    

A385793 Primes having only {4, 5, 9} as digits.

Original entry on oeis.org

5, 59, 449, 499, 599, 4549, 4999, 5449, 9949, 44449, 44549, 44959, 45599, 45949, 45959, 49459, 49499, 49549, 49559, 49999, 54449, 54499, 54559, 54949, 54959, 55949, 59999, 94559, 94949, 94999, 95549, 95959, 99559, 444449, 445499, 449459, 449549, 449959, 455599
Offset: 1

Views

Author

Jason Bard, Jul 13 2025

Keywords

Crossrefs

Supersequence of A020466, A020468.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [4, 5, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{4, 5, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [4, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("459"), 41))) # uses function/imports in A385776
    

A385797 Primes having only {5, 6, 9} as digits.

Original entry on oeis.org

5, 59, 569, 599, 659, 5569, 5659, 5669, 6569, 6599, 6659, 6959, 56569, 56599, 56659, 56999, 59659, 59669, 59699, 59999, 65599, 65699, 66569, 66959, 69959, 95569, 95959, 96959, 99559, 556559, 556999, 565559, 566659, 566999, 569599, 569659, 596569, 596599, 596669
Offset: 1

Views

Author

Jason Bard, Jul 13 2025

Keywords

Crossrefs

Supersequence of A020468.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [5, 6, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{5, 6, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [5, 6, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("569"), 41))) # uses function/imports in A385776
    

A385798 Primes having only {5, 8, 9} as digits.

Original entry on oeis.org

5, 59, 89, 599, 859, 8599, 8999, 9859, 55589, 55889, 58889, 59999, 85889, 85999, 88589, 89599, 89899, 89959, 89989, 95959, 95989, 98899, 98999, 99559, 99859, 99989, 555589, 558599, 559859, 585889, 585899, 585989, 589859, 598999, 599899, 599959, 599999, 855889
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Supersequence of A020468, A020472.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [5, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{5, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [5, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("589"), 41))) # uses function/imports in A385776
    

A385769 Primes having only {0, 5, 9} as digits.

Original entry on oeis.org

5, 59, 509, 599, 5009, 5059, 5099, 9059, 50599, 50909, 55009, 59009, 59509, 59999, 90059, 90599, 95009, 95959, 99559, 500009, 500509, 500909, 505559, 509909, 509959, 550009, 550909, 559099, 590099, 590599, 590959, 599009, 599959, 599999, 900959
Offset: 1

Views

Author

Jason Bard, Jul 09 2025

Keywords

Examples

			5009 is a term because it is prime and has only {0,5,9} as digits.
		

Crossrefs

Supersequence of A020468. Cf. A000040, A030433, A385776.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 5, 9]];
    
  • Mathematica
    Select[FromDigits/@Tuples[{0,5,9},5],PrimeQ]
  • PARI
    primes_with(, 1, [0, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("059"), 41))) # uses function/imports in A385776
    

A284382 Numbers k with digits 5 and 9 only.

Original entry on oeis.org

5, 9, 55, 59, 95, 99, 555, 559, 595, 599, 955, 959, 995, 999, 5555, 5559, 5595, 5599, 5955, 5959, 5995, 5999, 9555, 9559, 9595, 9599, 9955, 9959, 9995, 9999, 55555, 55559, 55595, 55599, 55955, 55959, 55995, 55999, 59555, 59559, 59595, 59599, 59955, 59959
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2017

Keywords

Comments

Prime terms are in A020468.

Crossrefs

Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), A284379 (k = 3), A256290 (k = 4), A256291 (k = 6), A284380 (k = 7), A284381 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {5, 9}];
    
  • Mathematica
    Join @@ ((FromDigits /@ Tuples[{5, 9}, #]) & /@ Range@ 5) (* Giovanni Resta, Mar 28 2017 *)
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '5').replace('1', '9'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 09 2021

A036321 Composite numbers whose prime factors contain no digits other than 5 and 9.

Original entry on oeis.org

25, 125, 295, 625, 1475, 2995, 3125, 3481, 7375, 14975, 15625, 17405, 35341, 36875, 74875, 78125, 87025, 176705, 184375, 205379, 299995, 358801, 374375, 390625, 435125, 479795, 497795, 883525, 921875, 1026895, 1499975, 1794005, 1871875
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020468. - David A. Corneth, Oct 09 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[1872000],CompositeQ[#]&&SubsetQ[{5,9},Flatten[ IntegerDigits/@ FactorInteger[#][[All,1]]]]&] (* Harvey P. Dale, Sep 17 2019 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020468} (p/(p - 1)) - Sum_{p in A020468} 1/p - 1 = 0.0550718517... . - Amiram Eldar, May 22 2022
Showing 1-10 of 12 results. Next