cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A020699 Expansion of (1-3*x)/(1-5*x).

Original entry on oeis.org

1, 2, 10, 50, 250, 1250, 6250, 31250, 156250, 781250, 3906250, 19531250, 97656250, 488281250, 2441406250, 12207031250, 61035156250, 305175781250, 1525878906250, 7629394531250, 38146972656250, 190734863281250, 953674316406250
Offset: 0

Views

Author

Keywords

Comments

Partial sums are A034478.
Except for the first two terms 1 and 2, these are the integers that satisfy phi(n) = 2*n/5. - Michel Marcus, Jul 14 2015
For n>=1, period of powers of 4 mod 10^n. See A000302. - Martin Renner, Jun 12 2020

Crossrefs

Programs

  • Maple
    seq(`if`(n=0,1,2*5^(n-1)), n=0..22); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    CoefficientList[Series[(1 - 3 x)/(1 - 5 x), {x, 0, 22}], x] (* Michael De Vlieger, Jul 14 2015 *)
  • PARI
    Vec((1-3*x)/(1-5*x) + O(x^30)) \\ Michel Marcus, Jul 14 2015

Formula

a(n) = 2*5^(n-1) for n>0.
E.g.f.: (2*exp(5*x)+3)/5; a(n)=(2*5^n+3*0^n)/5. - Paul Barry, Sep 03 2003
a(n) = sum{k=0..n, C(n-1, k)*(Jac(2n-2k)+Jac(2n-2k-1))}+0^n/2, where Jac(n)=A001045(n). - Paul Barry, Jun 07 2005
a(0)=1, a(1)=2, a(n) = 5*a(n-1) for n>=2. [Vincenzo Librandi, Jan 01 2011]
a(n) = A020729(n-1), n>0. - R. J. Mathar, Sep 16 2016

A154692 Triangle read by rows: T(n, k) = (2^(n-k)*3^k + 2^k*3^(n-k))*binomial(n, k).

Original entry on oeis.org

2, 5, 5, 13, 24, 13, 35, 90, 90, 35, 97, 312, 432, 312, 97, 275, 1050, 1800, 1800, 1050, 275, 793, 3492, 7020, 8640, 7020, 3492, 793, 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315, 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Examples

			Triangle begins
     2;
     5,     5;
    13,    24,    13;
    35,    90,    90,     35;
    97,   312,   432,    312,     97;
   275,  1050,  1800,   1800,   1050,    275;
   793,  3492,  7020,   8640,   7020,   3492,   793;
  2315, 11550, 26460,  37800,  37800,  26460, 11550,  2315;
  6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817;
		

Crossrefs

Sums include: A010673 (alternating sign row), A020699 (row), A020729 (row).
Related sequences: A007318, A154690,

Programs

  • Magma
    A154692:= func< n,k | (2^(n-k)*3^k + 2^k*3^(n-k))*Binomial(n,k) >;
    [A154692(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154692 := proc(n,m)
            (2^(n-m)*3^m+2^m*3^(n-m))*binomial(n,m) ;
    end proc:
    seq(seq(A154692(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 24 2011
  • Mathematica
    p=2; q=3;
    T[n_, m_]= (p^(n-m)*q^m + p^m*q^(n-m))*Binomial[n,m];
    Table[T[n,m], {n,0,10}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154692(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*binomial(n,k)
    print(flatten([[A154692(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

Sum_{k=0..n} T(n, k) = A020729(n) = A020699(n+1).
T(n,m) = A013620(n,m) + A013620(m,n). - R. J. Mathar, Oct 24 2011
From G. C. Greubel, Jan 18 2025: (Start)
T(2*n, n) = A119309(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A015518(n+1) + A007482(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A088137(n+1) + A000225(n+1). (End)

A132021 Decimal expansion of Product_{k>=0} 1-1/(2*5^k).

Original entry on oeis.org

4, 3, 8, 7, 9, 6, 8, 3, 7, 2, 0, 3, 6, 3, 8, 5, 3, 1, 2, 6, 6, 7, 2, 9, 9, 9, 7, 1, 7, 7, 2, 5, 8, 3, 5, 9, 6, 0, 4, 5, 7, 4, 6, 3, 1, 2, 3, 9, 3, 5, 1, 1, 6, 5, 4, 1, 7, 7, 3, 6, 7, 5, 6, 4, 3, 6, 7, 9, 1, 0, 6, 6, 5, 6, 9, 8, 6, 6, 5, 0, 0, 6, 9, 2, 8, 9, 6, 6, 7, 2, 3, 8, 9, 8, 5, 4, 4, 0, 0, 6, 0, 2, 8
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.438796837203638531...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*5^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/5], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_5(n))} floor(n/5^k)*5^k/n.
Equals lim inf_{n->oo} A132029(n)/n^(1+floor(log_5(n)))*5^(1/2*(1+floor(log_5(n)))*floor(log_5(n))).
Equals lim inf_{n->oo} A132029(n)/n^(1+floor(log_5(n)))*5^A000217(floor(log_5(n))).
Equals (1/2)*exp(-Sum_{n>0} 5^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132029(n)/A132029(n+1).
Equals Product_{n>=0} (1 - 1/A020729(n)). - Amiram Eldar, May 08 2023

A276508 a(n) = (2*5^n + 3*(-1)^(floor((n-1)/3)) + (-1)^n)/6.

Original entry on oeis.org

0, 2, 9, 42, 208, 1041, 5208, 26042, 130209, 651042, 3255208, 16276041, 81380208, 406901042, 2034505209, 10172526042, 50862630208, 254313151041, 1271565755208, 6357828776042, 31789143880209, 158945719401042, 794728597005208, 3973642985026041, 19868214925130208, 99341074625651042
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 06 2016

Keywords

Comments

Number of 1’s in substitution system {1 -> 12321, 2 -> 23132, 3 -> 31213} at step n from initial string "3" (see example). Number of 2’s: A000351(n) - A010892(n+1) - 2*a(n). Number of 3’s: A010892(n+1) + a(n).
Excluding zero, convolution of A000351 and A174737.

Examples

			Evolution from initial string "3": 3 -> 31213 -> 3121312321231321232131213 -> ...
Therefore, number of 1’s at step n:
a(0) = 0;
a(1) = 2;
a(2) = 9, etc.
		

Crossrefs

Programs

  • Maple
    A276508:=n->(2*5^n + 3*(-1)^(floor((n-1)/3)) + (-1)^n)/6: seq(A276508(n), n=0..30); # Wesley Ivan Hurt, Sep 07 2016
  • Mathematica
    Table[(2 5^n + 3 (-1)^Floor[(n - 1)/3] + (-1)^n)/6, {n, 0, 25}]
    LinearRecurrence[{6, -6, 5}, {0, 2, 9}, 26]
  • PARI
    concat(0, Vec(x*(2-3*x)/((1-5*x)*(1-x+x^2)) + O(x^99))) \\ Altug Alkan, Sep 06 2016

Formula

O.g.f.: x*(2 - 3*x)/((1 - 5 x)*(1 - x + x^2)).
E.g.f.: (exp(9*x/2) - 2*sin(Pi/6-sqrt(3)*x/2))*exp(x/2)/3.
a(n) = 6*a(n-1) - 6*a(n-2) + 5*a(n-3).
a(n) = (5^n + sqrt(3)*sin(Pi*n/3) - cos(Pi*n/3))/3.
a(n) = (A020729(n) + A057079(n-1))/3.

A095687 Numbers n such that n-th Pisano number = 6*n.

Original entry on oeis.org

0, 10, 50, 250, 1250, 6250, 31250, 156250, 781250, 3906250, 19531250, 97656250, 488281250, 2441406250, 12207031250, 61035156250, 305175781250, 1525878906250, 7629394531250, 38146972656250, 190734863281250
Offset: 1

Views

Author

Lekraj Beedassy, Jul 05 2004

Keywords

Comments

Period of Fibonacci sequence(mod m)<=6*m.
Effectively the same as A020699 and A020729 apart from the initial terms. [From Carl R. White, Sep 22 2009]

Crossrefs

Cf. A001175.

Formula

a(0) = 0, a(1) = 10, a(n) = 5*a(n-1); a(n) = sgn(n)*2*5^n [From Carl R. White, Sep 22 2009]

Extensions

More terms from Carl R. White, Sep 22 2009
Showing 1-5 of 5 results.