1, 0, 5, 10, 0, 14, 0, 35, 0, 30, 35, 0, 0, 0, 55, 0, 105, 0, 154, 0, 91, 84, 0, 220, 0, 260, 0, 140, 0, 231, 0, 390, 0, 0, 0, 204, 165, 0, 455, 0, 0, 0, 595, 0, 285, 0, 429, 0, 770, 0, 935, 0, 836, 0, 385, 286, 0, 0, 0, 1190, 0, 1330, 0, 0, 0, 506
Offset: 2
The triangle T(n, m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 11
2: 1
3: 0 5
4: 10 0 14
5: 0 35 0 30
6: 35 0 0 0 55
7: 0 105 0 154 0 91
8: 84 0 220 0 260 0 140
9: 0 231 0 390 0 0 0 204
10: 165 0 455 0 0 0 595 0 285
11: 0 429 0 770 0 935 0 836 0 385
12: 286 0 0 0 1190 0 1330 0 0 0 506
...
The smallest nonzero number for each row with even n is T(n, 1), and for odd n it is T(n, n-1).
The above mentioned nmin(N) will for N = 300 be 12.
Therefore, no number > 300 will appear for rows with n > 12.
-----------------------------------------------------
The corresponding quartets (C; x, y, z) are:
n=2: (24; 5, 7, 1),
n=3: (120; 13, 17, 7),
n=4: (240; 17, 23, 7), (336; 25, 31, 17),
n=5: (840; 29, 41, 1), (720; 41, 49, 31),
n=6: (840; 37, 47, 23), (1320; 61, 71, 49),
n=7: (2520; 53, 73, 17), (3696; 65, 89, 23),
(2184; 85, 97, 71),
n=8: (2016; 65, 79, 47), (5280; 73, 103, 7),
(6240; 89, 119, 41), (3360; 113, 127, 97),
n=9: (5544; 85, 113, 41), (9360; 97, 137, 7),
(4896; 145, 161, 127),
n=10: (3960; 101, 119, 79), (10920; 109, 151, 31),
(14280; 149, 191, 89), (6840; 181, 199, 161),
n=11: (10296; 125, 161, 73), (18480; 137, 193, 17),
(22440; 157, 217, 47), (20064; 185, 233, 119),
(9240; 221, 241, 199),
n=12: (6864; 145, 167, 119), (28560; 169, 239, 1),
(31920; 193, 263, 73), (12144; 265, 287, 241),
...
-----------------------------------------------------
The corresponding primitive Pythagorean triples
(u, v, x) are:
n=2: [3, 4, 5],
n=3: [5, 12, 13],
n=4: [15, 8, 17], [7, 24, 25],
n=5: [21, 20, 29],[9, 40, 41],
n=6: [35, 12, 37], [11, 60, 61],
n=7: [45, 28, 53], [33, 56, 65],
[13, 84, 85],
n=8: [63, 16, 65], [55, 48, 73],
[39, 80, 89], [15, 112, 113],
n=9: [77, 36, 85], [65, 72, 97],
[17, 144, 145],
n=10: [99, 20, 101], [91, 60, 109],
[51, 140, 149], [19, 180, 181],
n=11: [117, 44, 125], [105, 88, 137],
[85, 132, 157], [57, 176, 185],
[21, 220, 221],
n=12: [143, 24, 145], [119, 120, 169],
[95, 168, 193], [23, 264, 265],
...
Comments